「Python」Pandas-DataFrame的相关操作二

758 阅读5分钟

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第6天, 点击查看活动详情

如果这篇文章没有找到你想要的数据操作,请光顾我的上一篇文章哦

「Python」Pandas-DataFrame的相关操作一

话不多说,直接实战吧~

合并为一列并重置索引

需求:初始值有三列且每一列的数量均不相同,需要将三列合并为一列

实现效果如下: 在这里插入图片描述

主要是使用了melt函数,它将所有列变成行(显示为列变量)并在新列值中列出所有关联值。实现功能如下:

image.png

所以即使对于不同列的数量不相同的情况也可以合并为新的一列,对于空值,只需要.dropna()

实现代码:

df.melt().dropna().reset_index(drop=True)
# dropna()是为了解决三列的长短不一的情况,即有些列10行,有些列8行,需要除去空值。

为不同的列指定标签

案例一

需求:将高级、中级、低级管理者分别添加对应的类别标签,即1-2-3。

实现效果: 在这里插入图片描述

使用df['variable'].unique().tolist()就可以获取variable列出现过的值,通过list.index()方法就可以获取对应值的下标,即可能的下标值为0、1、2,就刚好和我们要的标签对应起来了。结合.apply方法,添加新列group即可。

实现代码:

# admin_dict = ['高级管理者', '中级管理者', '初级管理者']  
# df['variable'].unique().tolist() # 转化为列表
df['variable'].apply(lambda x : (admin_dict.index(x) + 1) )

index(x) + 1实际上就是把他变为1-2-3,默认是从0开始。

案例二

需求:将甲、乙、丙三种种子的类别标签添加到对应的数据中去。

即需要产量数据和类别标签两列数据。且对应的数据需要对应相应的类别。不妨将甲、乙、丙变为0-1-2。

原始数据:

原始数据

实现效果: 实现效果

先通过.stack()将所有的数据变为一列,再考虑如何添加对应标签的问题。

.reset_index(level=0)即去除掉第一个索引(unnamed...),保留原来的(0,1,2)索引。

reset_index(drop=True)是新的dataframe的索引重新排列为有序的。

代码实现:

df1 = df.iloc[:,1:].stack()   # 将三行数据变为一列

df2 = df1.reset_index(level=0).reset_index(drop=True) # 重置索引

df2.columns = ['level','value'] # 列重命名

如果想要将group列的值替换成甲、乙、丙的话,需要用到.apply方法,和案例一中的相似,这里不具体实现了。

案例三

需求:将含有两个标签的表格数据变为列数据,且index设置为对应的标签。(复合标签,如:(B1,A1))

原始数据:

在这里插入图片描述

实现效果: 在这里插入图片描述

仍然通过.stack()方法将数据展开成为一列,和前面一样,需要注意的是这里还使用了.astype()方法,将某一列的值全部变为同一类型,方便运算。

代码实现:

goods.stack().reset_index().rename(columns={0:'value'})

goods['value'] = goods['value'].astype(int)  
# astype(int):将某一列的值的类型变为int

统计一行的平均值并作为新的一列

需求:统一某一行的平均值并把它作为新的一列加在原始数据中。

计算平均值

方法一:

df5.iloc[:,1:].mean(axis=1)  # 直接算均值 

方法二:

df['Col_sum'] = df.apply(lambda x: x.sum() / len(x), axis=1)
# 可以适当变化取需要的列并求平均值  
# df['col_sum'] = df.iloc[,1:].apply(lambda x : x.sum() / len(x), axis = 1)

方法三:

# 计算每列的平均值并作为新的行
df.loc['Row_sum'] = df.apply(lambda x: x.sum())

根据已有列进行运算得到新的列

需求:根据已有列,拓展已有列的数值运算列。

原始数据: 在这里插入图片描述

实现效果: 在这里插入图片描述

代码实现:

# 方法一:
df3['p0q0'] = [df3.iloc[i,0] * df3.iloc[i,2] for i in range(len(df3))]
df3['p1q0'] = [df3.iloc[i,0] * df3.iloc[i,3] for i in range(len(df3))]
df3['p0q1'] = [df3.iloc[i,1] * df3.iloc[i,2] for i in range(len(df3))]
df3['p1q1'] = [df3.iloc[i,1] * df3.iloc[i,3] for i in range(len(df3))]
# 方法二:
[p1 * q1 for p1, q1 in zip(df7['Dollars']['1'],df7['Units']['1'])]
# 对某一列求和
sum(df3['p0q1'])

查找某一列超过一定数值

需求:DataFrame数据中查找某一列的数据大于某个值

代码实现:

data[data['月消费支出额(元)'] >= 600]

直接嵌套即可,有种套娃的感觉(bushi

pivot_table

需求:汇总人员的销售产品数量和收入总额

原始数据: 原始数据

汇总不同销售人员的销售总额: 在这里插入图片描述

展示一个销售人员销售不同商品的数量: image.png

主要用到pivot_table的aggfunc,聚合函数。

代码实现:

df.pivot_table(index='Name',values=['Dollars'],aggfunc=['count',np.sum]) 
# index:索引列  values:值  
# aggfunc:聚合函数(可以有多个)
# margins=True汇总
#  汇总每位销售人员销售每种产品的数量与销售额
df.pivot_table(index='Name',values=['Dollars'],columns=['Product'],aggfunc=['count',np.sum],margins=True)

绘图按照值从低到高排序

实现效果: 在这里插入图片描述

考查.sort_values()方法,参数by指定按照什么值排序,ascending为False时,从大到小排,反之,为从小到大排。

代码实现:

dft.sort_values(by=['含量'],ascending=False).plot(kind='bar')

柱状图不同类型不同颜色

需求:同一个柱状图中不同类型显示的颜色不同

实现效果: 在这里插入图片描述

通过dataframe.plot()指定color参数为plt.cm.Paired()即可实现同一个柱形图不同种类的颜色不同。

代码实现:

plt.bar(range(len(df3)), df3['次数'], 
        color=plt.cm.Paired(np.arange(len(df3))))
xlabel = ['日常', '约会', 'party聚会', 
            '旅行', '商务', '运动', '情趣', '其它']
plt.xticks(range(len(xlabel)),xlabel) # 设置标签

按照月份统计

需求:实现按月份统计销售量

原始数据: 在这里插入图片描述

实现效果: 在这里插入图片描述

代码实现

初步想法:

# Date:2013-01-01 ~ 2016-01-01
cakes.groupby(cakes['Date'].apply(lambda x:x.month)).sum()  

上述代码统计的是所有年份的1月,效果如下: image.png

我们需要实现的目标是:每一年的月份分别统计。所以可以想想用groupby先分组,按照月份分组,就可以实现想要的效果了!

代码如下:

cakes.groupby(cakes['Date'].apply(lambda x:x.strftime('%Y/%m'))).sum() 
# 每年每个月份分别求和

# df['日期'].apply(lambda x:x.strftime('%Y/%m')) 
# 将日期格式设置为年月

# df.groupby(df['日期'].apply(lambda x:x.strftime('%Y/%m')))  
# 按照年月groupby

上面还设置到了DataFrame中设置日期格式的函数strftime()

这次关于DataFrame的相关操作就分享到这儿了,等遇到实际的题再更后续吧。

如果对你有用的话。不妨动动小手,点个赞吧。--- 更文的动力🪶🪶🪶