三十、MapReduce之wordcount案例(环境搭建及案例实施)

202 阅读2分钟

环境准备:

Hadoop2.6.0

IDEA

maven3.5.4

案例分析:

        MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。本项目用到的便是俗称Helloword的数据提取案例,官网源码见hadoop安装目录:       

/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar

注意:在windows下直接查看需要反编译工具,解析jar包

 输入数据:                                                        

期望输出数据:

 环境搭建:

1.配置maven

        将下载好的maven路径配置进去

 


2.配置解释器

3.在pom.xml文件中添加如下依赖

        如下依赖只需要更改版本号即可,导入后刷新IDEA即可自动下载依赖

<dependencies>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>RELEASE</version>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-core</artifactId>
			<version>2.8.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-common</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-client</artifactId>
			<version>2.7.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-hdfs</artifactId>
			<version>2.7.2</version>
		</dependency>
</dependencies>

4.在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

程序编写:

(1)编写Mapper类

package org.example.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    private Text outk = new Text();
    private IntWritable outv = new IntWritable(1);

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        //获取一行
        String line = value.toString();
        //切割
        String[] words = line.split(" ");
        //循环写出
        for (String word : words) {
            //封装
            outk.set(word);
            //写出
            context.write(outk, outv);
        }
    }
}

(2)编写Reducer类

package org.example.mapreduce.wordcount;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    IntWritable outV = new IntWritable();

    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        int sum = 0;
        //tuomasi(1,1)
        //累加
        for (IntWritable value : values) {
            sum += value.get();
        }
        //写出
        outV.set(sum);

        context.write(key, outV);
    }
}

(3)编写Driver类

package org.example.mapreduce.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


import java.io.IOException;

public class WordCountDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException ,InterruptedException{
        //1.获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2.设置jor包路径
        job.setJarByClass(WordCountDriver.class);

        //3.关联mapper和reducer
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);

        //4.设置mapper输出的k,v类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        //5.设置最终输出的K,V类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //6.设置输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("E:\\input\\inputword"));
        FileOutputFormat.setOutputPath(job, new Path("E:\\output\\outputword"));

        //7.提交job作业
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);

    }
}

本地测试:

 注意:此处输出路径不能在运行前存在(提前存在会报错),运行后会自动生成

运行:

 如图所示即为运行成功。

找到本地生成的文件,查看是否与期望值相同,如图:

涉及到的问题:

注意:在第一次运行可能会报缺少winutils错误,只需下载对应版本的winutils.exe文件解压到本地,配置Hadoop的环境变量即可

我的Hadoop为2.6.0版即使用如下包,提取码:0000 下方链接:

pan.baidu.com/s/1CMgma_Vo…

或:

download.csdn.net/download/m0…

环境变量:

1.配置系统变量HADOOP_HOME,路径指向hadoop-common-2.6.0-bin-master

 2.Path配置,加入:%HADOOP_HOME%\bin

        友情提示:

如遇代码运行过程中有多处警告或报错大多都是因为导包出错的,请仔细查看包是否导入正确。 

 环境搭建及WordCount案例完成。