20221007 - 1800. Maximum Ascending Subarray Sum(在线处理)

81 阅读1分钟

Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.

A subarray is defined as a contiguous sequence of numbers in an array.

A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < r, numsi < numsi+1. Note that a subarray of size l is ascending.

Example 1

Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.

Example 2

Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.

Example 3

Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.

Constraints

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100

Solution

题意理解:全是正整数的数组,求其最大升序子数组和,注意这里定义的升序不是非递减序,要求后一项严格大于前一项。

应熟练掌握的在线处理思想

int maxAscendingSum(int* nums, int numsSize){
    int i, ThisSum, MaxSum, LastElem;
    ThisSum = MaxSum = LastElem = 0;
    for (i = 0; i < numsSize; i++) {
        if (nums[i] > LastElem) ThisSum += nums[i];
        else ThisSum = nums[i];
        if (ThisSum > MaxSum) MaxSum = ThisSum;
        LastElem = nums[i];
    }
    return MaxSum;
}

题目链接:1800. 最大升序子数组和 - 力扣(LeetCode)