9 Semigroups and Groups 半群与群
《离散数学结构》(Discrete Mathematical Structures)第九章
9.1 Binary Operations Revisited 二元运算
二元运算的基本概念
A binary operation on a set A is an everywhere defined function f: A×A→A.
二元运算满足三个性质:
-
运算具有封闭性
-
处处有定义
-
函数特性(每两个数只能有一个运算结果)
通常从以上三个方面判断是否为二元运算
运算表(Tables)
将操作数分别写在行和列上,行元素指向列元素即为从左到右的计算顺序,将行列操作数进行二元运算的结果表示出来。
重要问题:已知有限集的元素个数,如何求该有限集上可以定义的二元运算的个数
答案:
解析:含有 个元素的有限集,定义二元运算,观察运算表有 个格子,每个格子有 中结果可以取,总共是 种二元运算。
二元运算的性质
交换律(commutative)
A binary operation * on a set A is said to be commutative if a * b = b * a
- A binary operation that is described by a table is commutative if and only if the entries in the table are symmetric with respect to the main diagonal.
具有交换律的二元运算其运算表是关于主对角线对称的。
结合律(associative)
A binary operation * on a set A is said to be associative if a * ( b * c ) = ( a * b ) * c.
幂等律(idempotent)
A binary operation * on a set A is said to have the idmepotent property if a * a = a.
重要问题:证明定义在某集合上的关系是偏序集且其中任意两个元素的最大下界为给定表达式
-
第一步:证明是偏序集
- 证明自反性
- 证明反对称性(任意两个元素满足关系等于关系的逆要能推出这两个元素是同一个元素)
- 证明传递性
-
第二步:证明最大下界为给定表达式
- 证明给定表达式是下界
- 证明是最大下界(取另一个元素与先前两元素都有关系,推的取得这个元素一定是比给定表达式小的下界)
9.2 Semigroups 半群
半群的相关概念
定义非空集合 S 和 S 上若干个定义在该集合上的运算 f1 f2 ... fn 组成的系统称为一个代数系统,简称代数,记作 V = (S, f1, f2, ..., fn)
代数系统 (S, *) ,若 S 非空且 * 是封闭的,则称 (S, *) 为广群。
代数系统 (S, *) ,若 S 非空且 * 是封闭的,可结合的,则称 (S, *) 为半群。
A semigroup is a nonempty set S together with an associative binary operation * defined on S
The (S, *) is said to be commutative(交换半群) if * is a commutative operation
An element e in a semigroup (S, *) is called an identity element if e * a = a * e = a for all a in S. An identity must be unique.
单位元要符合左右都有单位运算性质才行。
A monoid is a semigroup (S, *) that has an identity
独异点是含有单位元的半群,也称为含幺半群
Let (S, *) be semigruop and T belongs to S.
If T is closed under the operation *, then (T, *) is called subsemigroup of (S, *)
子半群是半群的一个子集,不需要证明它的结合性,只要是半群的子集就是子半群。
Let (S, *) be a monoid with identity e, and T belongs to S.
If T is closed under the operation * and e is in T, then (T, *) is called a submonoid of (S, *)
子独异点要求是独异点的子集,运算封闭,且它要包含原来独异点的那个单位元,自己另外一个单位元但不是 S 的单位元不行。
Note: The associative property holds in any subset of a semigroup so that a subsemigroup (T, *) of a semigroup (S, *) is itself a semigroup. Similarly, a submonoid of a monoid is itself a monoid.
一个半群的子半群可以是它本身,一个独异点的子独异点也可以是它本身。
Suppose (S, *) is a semigroup, a is in S, n is in Z+
Define the powers of recursively as follows:
if (S, *) is a monoid
If m and n are nonnegative integers, then
定理:
- 若干子半群的非空交集仍为子半群
- 若干子独异点的交集仍为子独异点
同构
Let (S, *) and (T, *) be two semigroups.
A function f: S→T is called an isomorphism from (S, *) to (T, *') if it is a one-to-one correspondence from S to T, and f(a * b) = f(a) *' f(b) for all a and b in S.
设 和 为两个半群,如果函数 是 到 的一一映射,并且对 中所有的 和 有
则称函数 是从 到 的一个同构
Note: If f is an isomorphism from (S, *) to (T, *'), then, since f is a one-to-one correspondence, f-1 exists and is a one-to-one correspondence from T to S.
因为 f 是一一映射,所以他的反函数也是一一映射,这样子就可以有从 T 到 S 的映射。这就反映了同构是相互的。
证明:
两个同构半群(Isomorphic semigroups)写作
重要问题:证明两个半群同构的步骤
- STEP 1: Define a function f: S→T with Dom(f) = S. (定义一个函数)
- STEP 2: Show that f is one-to-one. (证明单射)
- STEP 3: Show that f is onto. (证明满射)
- STEP 4: Show that f(a * b) = f(a) *' f(b) (验证定义)
THEOREM 2 Let (S, *) and (T, *') be monoids with identities e and e', respectively. f :S→T be an isomorphism.
Then f(e) = e'
两个同构半群的独异点也是同构的,表现在符合函数
注意:如果一个代数系统有幺元,另一个没有幺元,则两者一定不同构
同态
Let (S, *) and (T, *) be two semigroups. An everywhere-defined function f:S→T is called a homomorphism from (S, *) to (T, *) if f(a * b) = f(a) *' f(b) for all a and b in S.
同态比同构要求弱一些,只要求是映射不要求一一映射。但都需要满足定义式。
If f is also onto, we say that T is a homomorphic image of S.
如果 f 是满射的,则 T 是 S 的同态像。
同态和同构都满足共同的关系式:积的像是像的积
同态也有独异点同构,
THEOREM 4 Let f be a homomorphism from a semigroup (S, *) to a semigroup (T, *). If S' is a subsemigroup of (S, *), then
,
the image of S' under f, is a subsemigroup of (T, *').
证明是套定义式:
子半群的同态 f 下的像是子半群。
THEOREM 5 If f is a homomorphism from a commutative semigroup (S, *) onto a semigroup (T, *'), then (T, *') is also commutative.
证明就是用定义式套:
9.3 Products and Quotients of Semigroups 乘积半群和商半群
乘积半群
THEOREM 1 If and are semigroup, then is a semigroup, where is defined by .
乘积半群的定义是笛卡尔积中取出序偶然后对应项相乘。
An equivalence relation on the semigroup is called a congruence relation if
同余关系的定义是两组同余对应项运算后也同余。
商半群
Recall that an equivalence relation on the semigtoup determines a partition of . We let be the equivalence class containing and denote the set of all equivalence calsses.
首先回顾等价类和商集的概念,商集是由等价类的划分构成的集合,其中的元素都是等价类。
Let be a congruence relation on the semigroup . Consider the relation from to in which the ordered pair if, for and in , related to .
a)
b) is a semigroup
证明商集也是子群的方法是证明其封闭性和结合性。
COROLLARY 1 Ler be a congruence relation on the monoid . If we define the operation in by , then is a monoid.
独异点导出的商集也是独异点。单位元自身构成一个等价类。
自然同态
THEOREM 3 Let be a congrurence relation on a semigroup , and let be the corresponding quotient semigroup. Then the function defined by
is a onto homomorphism, called the natural homomorphism.
原半群到同余关系 R 的商半群的一个同一等价类内的元素到该等价类的映射是同态的。
证明自然同态的方法:
- 先给出函数
- 证明函数单射满射
- 证明符合同态的定义式(运算的映射等于映射的运算)
同态基本定理
THEOREM 4 Fundamental Homomorphism Theorem
Let be a homomorphism of semigroup onto the semigroup . Let be the relation on defined by if and only if , for and in . Then
a) is a congruence relation.
b) and the quotien semigroup are isomorphic.
是 的同态, 被关系 划分的商集与 同构。
证明
a) 要证同余关系,首先要证明 是等价关系,然后用同余关系的定义证明
- 证等价关系分三步:证自反性、证对称性、证传递性
- 同余关系的定义:两组同余对应项运算后也同余(定义式)
b) 证明同构有三部分
- 先给出函数,再证明函数是一一对应的双射(前两部分)
- 先取商集中任意一个等价类中的两个元素,这两个元素有关系 R ,然后我们又从 f 的定义知道这两个元素在 T 中 f 的映射是相等的,我们就可以定义出 S/R 到 T 的映射 ,这是(S/R 中的等价类)到(T 中的由等价类中所有元素经 f 的映射)的映射。这就证明了函数性。
- 从 S/R 中取由 S 中两个同余的元素为代表元的两个相等的等价类,经过 映射到 T ,由于这俩代表元经过 f 又在 T 中成为了同一个元素,所以前面取的两个代表元代表的等价类经过 映射到 T 的函数值也是相等的,即自变量相同函数值也相同。这就证明了是单射(一一对应)。
- 对 T 中任意的元素 t ,都可以在 S/R 中找到一个元素经过 映射到 t ,这就证明了是满射(上映)。
- 再用同构定义式证明同构(运算的映射等于映射的运算)(第三部分)
一个典型的应用同构基本定理的例子
值得一提的是,同构基本定理中出现的同态关系本质上都是函数,可以从函数的角度说明他们的关系,那就是函数的复合。