持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第4天,点击查看活动详情
L(μ1,μ2,Σ,ϕ)=i=1∑N[(1)logN(μ1,Σ)yi+(2)logN(μ2,Σ)1−yi+(3)logϕyi(1−ϕ)1−yi]
求ϕ,显然只有(3)与ϕ相关
(3)∂ϕ∂(3)0000ϕ^=i=1∑Nlogϕyi(1−ϕ)1−yi=i=1∑N[yilogϕ+(1−yi)log(1−ϕ)]=i=1∑N[yi⋅ϕ1−(1−yi)1−ϕ1]=0=i=1∑N[yi⋅(1−ϕ)−(1−yi)ϕ]=i=1∑N(yi−yiϕ−ϕ+yiϕ)=i=1∑N(yi−ϕ)=i=1∑Nyi+Nϕ=Ni=1∑Nyi
求μ1,显然只有(1)与μ1相关。对于μ2类似于μ1,只需要1−yi替换yi即可
(1)μ1∂μ1∂Δ00i=1∑Nyiμ1μ1^=i=1∑NlogN(μ1,Σ)yi=i=1∑Nyilog(2π)2p∣Σ∣211exp[−21(xi−μ1)TΣ−1(xi−μ1)]=μ1argmax (1)=μ1argmax i=1∑Nyi[−21(xi−μ1)TΣ−1(xi−μ1)]=μ1argmax −21i=1∑Nyi(xiTΣ−1−μ1TΣ−1)(xi−μ1)=μ1argmax −21i=1∑Nyi(∈RxiTΣ−1xi−1×1xiTΣ−1μ1−1×1μ1TΣ−1xi+μ1TΣ−1μ1)=μ1argmax Δ−21i=1∑Nyi(xiTΣ−1xi−2μ1TΣ−1xi+μ1TΣ−1μ1)=−21i=1∑Nyi(−2Σ−1xi+2Σ−1μ1)=0=i=1∑Nyi(Σ−1μ1−Σ−1xi)=i=1∑Nyi(μ1−xi)=i=1∑Nyixi=i=1∑Nyii=1∑Nyixi
这里我们设
C1C0N={xi∣yi=1,i=1,2,⋯,N},∣C1∣=N1={xi∣yi=0,i=1,2,⋯,N},∣C0∣=N0=N1+N0
因此
μ1^=N1i=1∑Nyixi
再用1−yi替换yi得μ2^
μ2^=i=1∑N(1−yi)i=1∑N(1−yi)xi=N−N1i=1∑N(1−yi)xi=N0i=1∑N(1−yi)xi
求Σ,显然只有(1),(2)与Σ相关
(1)+(2)i=1∑NlogN(μ,Σ)i=1∑N(xi−μ)TΣ−1(xi−μ)i=1∑NlogN(μ,Σ)(1)+(2)∂Σ∂(1)+(2)NΣ−N1S1−N2S2Σ^=i=1∑NyilogN(μ1,Σ)+i=1∑N(1−yi)logN(μ2,Σ)=xi∈C1∑log(μ1,Σ)+xi∈C2∑logN(μ2,Σ)=i=1∑N(2π)2p∣Σ∣211exp[−21(xi−μ)TΣ−1(xi−μ)]=i=1∑N[log(2π)2p1+log∣Σ∣21+(−21(xi−μ)TΣ−1(xi−μ))]=i=1∑N[C−21log∣Σ∣−21(xi−μ)TΣ−1(xi−μ)]=C−21Nlog∣Σ∣−21∈Ri=1∑N(xi−μ)TΣ−1(xi−μ)=i=1∑Ntr [(xi−μ)TΣ−1(xi−μ)]=i=1∑Ntr [(xi−μ)(xi−μ)TΣ−1]=tr ⎣⎡xi的方差Si=1∑N(xi−μ)(xi−μ)TΣ−1⎦⎤设S=N1i=1∑N(xi−μ)(xi−μ)T=N⋅ tr (SΣ−1)带回i=1∑NlogN(μ,Σ)=C−21Nlog∣Σ∣−21i=1∑N(xi−μ)TΣ−1(xi−μ)=−21Nlog∣Σ∣−21N⋅tr (S⋅Σ−1)+C带回(1)+(2)=−21N1log∣Σ∣−21N⋅tr (S⋅Σ−1)−21N2log∣Σ∣−21N⋅tr (S2Σ−1)+C=−21Nlog∣Σ∣−21N⋅tr (S2Σ−1)−21N⋅tr (S⋅Σ−1)+C=−21[Nlog∣Σ∣+N1tr (S1Σ−1)+N2tr (S2Σ−1)]+C=−21(N⋅∣Σ∣1∣Σ∣Σ−1−N1S1Σ−1Σ−1−N2S2Σ−1Σ−1)=0=0=N1(N1S1+N2S2)
迹的性质
tr (AB)tr (ABC)=tr (BA)=tr (CAB)=tr (BCA)
矩阵求导
$$\begin{aligned} \frac{\partial \text{tr }(AB)}{\partial A}&=B^{-1}\\frac{\partial |A|}{\partial A}&=|A|\cdot A^{T}\end{aligned}$