我正在参加「掘金·启航计划」
reentrantLock 介绍底层实现原理
reentrantLock:公平锁和非公平锁.
private Lock lock = new ReentrantLock();
lock.lock(); //加锁
lock.unlock(); //释放锁
1. lock.lock()源码分析
1. 调用内部抽象类 Sync的Lock()方法
Sync 继承 AbstractQueuedSynchronizer(AQS)方法
abstract static class Sync extends AbstractQueuedSynchronizer方法
2. Sync的Lock()方法分别调用子类公平锁/非公平锁的类的Lock()方法
static final class NonfairSync extends Sync
//非公平锁
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());//修改成功 设置当前线程为独占锁
else
acquire(1); //获得锁
}
//公平所
final void lock() {
acquire(1); //公平锁和非公平锁都是调用此方法 获得锁
}
//CAS原子操作 修改内存中的state字段的值
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
//如果没有修改成功/,没有获得锁 、 公平锁直接调用此方法
public final void acquire(int arg) {
//!tryAcquire(arg) 尝试获得锁 第一个线程,此方法肯定是false
//acquireQueued(addWaiter(Node.EXCLUSIVE), arg) 竞争锁 竞争不到的时候添加到队列里
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt(); // 只有在竞争锁的时候才会执行到这里
}
//非公平锁
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();//当前线程
int c = getState(); // private volatile int state;
if (c == 0) { //再次判断锁是都被占用 如果没有被占用 就再去尝试获得锁
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {//如果当前线程就是拥有独占锁的线程
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc); //重新设置state的值
return true;
}
return false; //都不满足:就是拥有锁的线程Thread1还在运行(还没有释放),Thread2 再次请求获得锁
}
//公平锁
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) { //与非公平锁的区别就是 hasQueuedPredecessors() 此方法就是判断当前的线程在 Node节点/或者链表、(FIFO)同步队列 第一个节点。第一个线程进来,此方法返回肯定是false
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
//创建新的Node节点
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail; //第一个线程进来 是 null
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
//设置队列的head 和 tail 节点
private Node enq(final Node node) {
for (;;) { //通过自旋方式
Node t = tail;
if (t == null) { // Must initialize
//第一个线程进来 去内存中设置head 的值new Node() 变量tail = head;
if (compareAndSetHead(new Node()))
tail = head; //因为用的是volatile修饰的 每次读取都是主内存中读取
} else {
node.prev = t;
if (compareAndSetTail(t, node)) { //CAS原子 设置尾节点Tail 为新建的node
t.next = node;
return t;
}
}
}
}
//添加到队列
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {// 只有一个线程在队列里执行 并且抢到锁的情况下
setHead(node); //当前线程设置为head
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus; //锁的等待状态
if (ws == Node.SIGNAL)
return true;
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
areAndSetWaitStatus(pred, ws, Node.SIGNAL); //设置为等待unPark
}
return false;
}
private final boolean parkAndCheckInterrupt() { //设置当线程阻塞 Park
LockSupport.park(this);
return Thread.interrupted();
}
2. lock.unLock() 源码分析
1. 调用Sync的release方法
public void unlock() {
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head; // unpark第一个(head)节点的线程
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread()) //必须是加锁的线程才能释放锁
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) { //因为会有重入锁的概念 所以必须等到所有锁释放完才能通知其他线程
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);//修改线程的等待状态为0
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread); //通知线程可以运行了
}