map参数传递
map作为参数传递给某函数时传递的是map的引用,即map的指针,类似于C++的引用传递
map是一个由make函数创建的数据结构的引用。map作为参数传递给某函数时,该函数接收这个引用的一份拷贝(copy,或译为副本),被调用函数对map底层数据结构的任何修改,调用者函数都可以通过持有的map引用看到。在我们的例子中,countLines函数向counts插入的值,也会被main函数看到。(译注:类似于C++里的引用传递,实际上指针是另一个指针了,但内部存的值指向同一块内存)
new函数
内建的new函数可用于创建变量,表达式new(T)将创建一个T类型的匿名变量,初始化为T类型的零值,然后返回变量地址,返回的指针类型为*T
每次调用new函数都是返回一个新的变量的地址,因此下面两个地址是不同的:
p := new(int)
q := new(int)
fmt.Println(p == q) // "false"
变量的生命周期
变量的生命周期指的是在程序运行期间变量有效存在的时间段。对于在包一级声明的变量来说,它们的生命周期和整个程序的运行周期是一致的。而相比之下,局部变量的声明周期则是动态的:每次从创建一个新变量的声明语句开始,直到该变量不再被引用为止,然后变量的存储空间可能被回收。函数的参数变量和返回值变量都是局部变量,它们在函数每次被调用的时候创建
Go语言的自动垃圾收集器是如何知道一个变量是何时可以被回收的呢?
实现思路:从每个包级的变量和每个当前运行函数的每一个局部变量开始,通过指针或引用的访问路径遍历,是否可以找到该变量。如果不存在这样的访问路径,那么说明该变量是不可达的,也就是说它是否存在并不会影响程序后续的计算结果。此时即可将该变量回收。
因为一个变量的有效周期只取决于是否可达,因此一个循环迭代内部的局部变量的生命周期可能超出其局部作用域。同时,局部变量可能在函数返回之后依然存在。
编译器会自动选择在栈上还是在堆上分配局部变量的存储空间,但可能令人惊讶的是,这个选择并不是由用VAR还是NEW声明变量的方式决定的。
var global *int
func f() {
var x int
x = 1
global = &x
}
func g() {
y := new(int)
*y = 1
}
f函数里的x变量必须在堆上分配,因为它在函数退出后依然可以通过包一级的global变量找到,虽然它是在函数内部定义的。即这个X局部变量从函数f中逃逸了。相反,当g函数返回时,变量y将是不可达的,也就是说可以马上被回收的。因此y并没有从函数g中逃逸,编译器可以选择在栈上分配*y的存储空间。虽然这里用的是new方式。其实在任何时候,你并不需为了编写正确的代码而要考虑变量的逃逸行为,要记住的是,逃逸的变量需要额外分配内存,同时对性能的优化可能会产生细微的影响。
Go语言的自动垃圾收集器对编写正确的代码是一个巨大的帮助,但也并不是说你完全不用考虑内存了。你虽然不需要显式地分配和释放内存,但是要编写高效的程序你依然需要了解变量的生命周期。例如,如果将指向短生命周期对象的指针保存到具有长生命周期的对象中,特别是保存到全局变量时,会阻止对短生命周期对象的垃圾回收(从而可能影响程序的性能)。
字符串
一个字符串是一个不可改变的字节序列。字符串可以包含任意的数据,保活byte值0,但是通常是用来包含人类可读的文本。 内置的len函数可以返回一个字符串中的字节数目(不是rune字符数目),索引操作s[i]返回第i个字节的字节值,i必须满足0 ≤ i< len(s)条件约束。
s := "hello, world"、、
fmt.Println(len(s)) // "12"
fmt.Println(s[0], s[7]) // "104 119" ('h' and 'w')
如果试图访问超出字符串索引范围的字节将会导致panic异常:
c := s[len(s)] // panic: index out of range
字符串可以用==和<进行比较;比较通过逐个字节比较完成的,因此比较的结果是字符串自然编码的顺序。 字符串的值是不可变的:一个字符串包含的字节序列永远不会被改变,当然我们也可以给一个字符串变量分配一个新字符串值。
s := "left foot"
t := s
s += ", right foot"
因为字符串是不可修改的,因此尝试修改字符串内部数据的操作也是被禁止的:
s[0] = 'L' // compile error: cannot assign to s[0]
字符串和字节slice之间可以相互转换
s := "abc"
b := []byte(s)
s2 := string(b)
从概念上讲,一个[]byte(s)转换是分配了一个新的字节数组用于保存字符串数据的拷贝,然后引用这个底层的字节数组。编译器的优化可以避免在一些场景下分配和复制字符串数据,但总的来说需要确保在变量b被修改的情况下,原始的s字符串也不会改变。将一个字节slice转换到字符串的string(b)操作则是构造一个字符串拷贝,以确保s2字符串是只读的。
符串和数字的转换
数字转字符串:
x := 123
y := fmt.Sprintf("%d", x)
fmt.Println(y, strconv.Itoa(x)) // "123 123"
字符串转数字:
x, err := strconv.Atoi("123") // x is an int
y, err := strconv.ParseInt("123", 10, 64) // base 10, up to 64 bits
数组
长度固定
默认情况下,数组的每个元素都被初始化为元素类型对应的零值,对于数字类型来说就是0。
在数组字面值中,如果在数组的长度位置出现的是“...”省略号,则表示数组的长度是根据初始化值的个数来计算。因此,上面q数组的定义可以简化为
q := [...]int{1, 2, 3}
fmt.Printf("%T\n", q) // "[3]int"
SLICE
一个slice是一个轻量级的数据结构,提供了访问数组子序列元素的功能,slice的底层确实引用一个数组对象。一个slice由三个部分构成:指针、长度和容量。指针指向第一个slice元素对应的底层数组元素的地址(注意的是slice的第一个元素并不一定就是数组的第一个元素)长度对应slice中元素的数目;长度不能超过容量,容量一般是从slice的开始位置到底层数据的结尾位置。内置的len和cap函数分别返回slice的长度和容量。
slice切片操作s[i:j]
用于创建一个新的slice,引用s的从第i个元素开始到第j-1个元素的子序列。新的slice将只有j-i个元素。 s[1:]等价于s[1:len(s)] s[:2]等价于s[0:2] s[:]则是引用整个数组
slice之间的比较
和数组不同的是,slice之间不能比较,因此我们不能使用==操作符来判断两个slice是否含有全部相等元素。不过标准库提供了高度优化的bytes.Equal函数来判断两个字节型slice是否相等([]byte),但是对于其他类型的slice,我们必须自己展开每个元素进行比较。
为何slice不直接支持比较运算符呢?这方面有两个原因。
第一个原因,一个slice的元素是间接引用的,一个slice甚至可以包含自身(译注:当slice声明为[]interface{}时,slice的元素可以是自身)
深度相等判断
func DeepEqual(x, y interface {}) bool
append函数
func appendInt(x []int, y int) []int {
var z []int
zlen := len(x) + 1
if zlen <= cap(x) {
// There is room to grow. Extend the slice.
z = x[:zlen]
} else {
// There is insufficient space. Allocate a new array.
// Grow by doubling, for amortized linear complexity.
zcap := zlen
if zcap < 2*len(x) {
zcap = 2 * len(x)
}
z = make([]int, zlen, zcap)
copy(z, x) // a built-in function; see text
}
z[len(x)] = y
return z
}
每次调用appendInt函数,必须先检测slice底层数组是否有足够的容量来保存新添加的元素。如果有足够空间的话,直接扩展slice(依然在原有的底层数组之上),将新添加的y元素复制到新扩展的空间,并返回slice。因此,输入的x和输出的z共享相同的底层数组。
如果没有足够的增长空间的话,appendInt函数则会先分配一个足够大的slice用于保存新的结果,先将输入的x复制到新的空间,然后添加y元素。结果z和输入的x引用的将是不同的底层数组。
虽然通过循环复制元素更直接,不过内置的copy函数可以方便地将一个slice复制另一个相同类型的slice。copy函数的第一个参数是要复制的目标slice,第二个参数是源slice,目标和源的位置顺序和dst = src赋值语句是一致的。两个slice可以共享同一个底层数组,甚至有重叠也没有问题。copy函数将返回成功复制的元素的个数(我们这里没有用到),等于两个slice中较小的长度,所以我们不用担心覆盖会超出目标slice的范围。
为了提高内存使用效率,新分配的数组一般略大于保存x和y所需要的最低大小。通过在每次扩展数组时直接将长度翻倍从而避免了多次内存分配,也确保了添加单个元素操的平均时间是一个常数时间。 更新slice变量不仅对调用append函数是必要的,实际上对应任何可能导致长度、容量或底层数组变化的操作都是必要的。要正确地使用slice,需要记住尽管底层数组的元素是间接访问的,但是slice对应结构体本身的指针、长度和容量部分是直接访问的。要更新这些信息需要像上面例子那样一个显式的赋值操作。从这个角度看,slice并不是一个纯粹的引用类型,它实际上是一个类似下面结构体的聚合类型:
slice模拟一个stack栈
stack:
stack=append(stack,v)
stack的顶部位置对应slice的最后一个元素:
top :=stack[len(stack)-1]
通过收缩stack可以弹出栈顶的元素
stack = stack[:len(stack)-1] // pop
删除slice中的某一个元素
func remove(slice []int, i int) []int {
copy(slice[i:], slice[i+1:])
return slice[:len(slice)-1]
}
func main() {
s := []int{5, 6, 7, 8, 9}
fmt.Println(remove(s, 2)) // "[5 6 8 9]"
}
Map
哈希表是一种巧妙并且实用的数据结构。它是一个无序的key/value对的集合,其中所有的key都是不同的,然后通过给定的key可以在常数时间复杂度内检索、更新或删除对应的value。map的key类型必须是可比较的类型
map中的元素并不是一个变量,因此我们不能对map的元素进行取址操作:
_ = &ages["bob"] // compile error: cannot take address of map element
禁止对map元素取址的原因是map可能随着元素数量的增长而重新分配更大的内存空间,从而可能导致之前的地址无效。
为什么map元素不能取址操作而slice可以?
禁止对 map 元素取址的原因是 map 可能随着元素数量的增长而重新分配更大的内存空间,从而可能导致之前的地址无效。 map每次扩容会导致map的元素重新排序,地址重新分配。所以元素也就不在之前的地址,即之前的地址无效了。而slice的底层是一个数组,扩容了之后只是将数组的元素迁移到了一个更大的内存空间,数组本身的元素的顺序并没有改变。即数组元素的相对位置没有改变,我们仍可以通过数组的指针找寻数组的元素的地址。而map的元素在map内部的顺序已经发生改变,我们无法通过map的指针找寻map元素的地址。
Map的迭代顺序是不确定的,并且不同的哈希函数实现可能导致不同的遍历顺序。在实践中,遍历的顺序是随机的,每一次遍历的顺序都不相同。这是故意的,每次都使用随机的遍历顺序可以强制要求程序不会依赖具体的哈希函数实现。如果要按顺序遍历key/value对,我们必须显式地对key进行排序,可以使用sort包的Strings函数对字符串slice进行排序。下面是常见的处理方式:
map的扩容:
判断两个map的key和value是否相同
func equal(x, y map[string]int) bool {
if len(x) != len(y) {
return false
}
for k, xv := range x {
if yv, ok := y[k]; !ok || yv != xv {
return false
}
}
return true
}
例子中通过ok区分map中的元素是存在且为0还是不存在该元素。
通过MAP实现SET
案例:通过map实现set并保证map中的元素不重复
seen := make(map[string]bool) // a set of strings
input := bufio.NewScanner(os.Stdin)
for input.Scan() {
line := input.Text()
_, ok := seen[line]
if !ok {
seen[line] = true
fmt.Println(line)
} else {
fmt.Println("该元素已存在!")
}
}