我正在参加「掘金·启航计划」
Lab0 要求我们实现一个在内存中的 有序可靠字节流(有点类似于管道)
代码风格
CS144 使用 C++11 标准完成实验,它对C++代码的风格有着严格的限制:
-
使用 Resource acquisition is initialization 风格,即 RAII 风格。
-
禁止使用 malloc 和 free 函数
-
禁止使用 new 和 delete 关键字
-
禁止使用原生指针(*)。若有必要,最好使用智能指针(unique_ptr等等)。
CS144实验指导书说明,该实验没有必要用到指针。
-
禁止使用模板、线程相关、各类锁机制以及虚函数
-
禁止使用C风格字符串(char*) 以及 C 风格字符串处理函数。使用 string 来代替。
-
禁止使用 C 风格强制类型转换。若有必要请使用
static_cast -
传递参数给函数时,请使用常量引用类型(const Ty& t)
-
尽可能将每个变量和函数方法都声明成 const
-
禁止使用全局变量,以及尽可能让每个变量的作用域最小
-
在完成代码后,务必使用
make format来标准化代码风格。
要求
- 字节流可以从写入端写入,并以相同的顺序,从读取端读取
- 字节流是有限的,写者可以终止写入。而读者可以在读取到字节流末尾时,产生EOF标志,不再读取。
- 所实现的字节流必须支持流量控制,以控制内存的使用。当所使用的缓冲区爆满时,将禁止写入操作。直到读者读取了一部分数据后,空出了一部分缓冲区内存,才让写者写入。
- 写入的字节流可能会很长,必须考虑到字节流大于缓冲区大小的情况。即便缓冲区只有1字节大小,所实现的程序也必须支持正常的写入读取操作。
在单线程环境下执行,因此不用考虑各类条件竞争问题。
这是在内存中的有序可靠字节流,接下来的实验会让我们在不可靠网络中实现一个这样的可靠字节流,而这便是传输控制协议(Transmission Control Protocol,TCP)
ByteStream
private:
std::deque<char> _queue;//双端队列
size_t _capacity_size; //字符流的大小
size_t _written_size;//已经写入的字符数
size_t _read_size;//已经读出的字符数
bool _end_input;//输入流是否关闭
bool _error{}; //字符流是否错误
write端
size_t write(const std::string &data); //将数据写入字节流中,并返回写入的大小(可能不能全部写入
size_t remaining_capacity() const; //字节流中还可以写入多少字符
void end_input(); //关闭输入流
void set_error() { _error = true; } //字节流错误
read端
std::string peek_output(const size_t len) const; //读取出长度为len的字符串(可能读不了这么多
void pop_output(const size_t len); //将读出的字符串删除
std::string read(const size_t len) { //从字节流中读取字符串
const auto ret = peek_output(len);
pop_output(len);
return ret;
}
bool input_ended() const; //输入流是否关闭
bool error() const { return _error; } //字节流是否错误
size_t buffer_size() const; //字节流中的大小
bool buffer_empty() const; //字节流是否为空
bool eof() const; //输入流关闭且字节流为空
size_t bytes_written() const; //总共写入了多少字符
size_t bytes_read() const; //总共读取了多少字符
byte_stream.cc
#include "byte_stream.hh"
// Dummy implementation of a flow-controlled in-memory byte stream.
// For Lab 0, please replace with a real implementation that passes the
// automated checks run by `make check_lab0`.
// You will need to add private members to the class declaration in `byte_stream.hh`
template <typename... Targs>
void DUMMY_CODE(Targs &&.../* unused */) {}
using namespace std;
ByteStream::ByteStream(const size_t capacity)
: _queue(), _capacity_size(capacity), _written_size(0), _read_size(0), _end_input(false), _error(false) {}
size_t ByteStream::write(const string &data) {
size_t res = 0;
if(!input_ended()){
res = min(data.length(),remaining_capacity());
_written_size += res;
for (size_t i = 0; i < res; i++)
{
_queue.push_back(data[i]);
}
}
return res;
}
//! \param[in] len bytes will be copied from the output side of the buffer
string ByteStream::peek_output(const size_t len) const {
size_t pop_size = min(len,buffer_size());
return string(_queue.begin(), _queue.begin() + pop_size);
}
//! \param[in] len bytes will be removed from the output side of the buffer
void ByteStream::pop_output(const size_t len) {
size_t pop_size = min(len,buffer_size());
_read_size += pop_size;
for (size_t i = 0; i < pop_size; i++)
{
_queue.pop_front();
}
}
//! Read (i.e., copy and then pop) the next "len" bytes of the stream
//! \param[in] len bytes will be popped and returned
//! \returns a string
std::string ByteStream::read(const size_t len) {
string res = peek_output(len);
pop_output(len);
return res;
}
void ByteStream::end_input() { _end_input = true;}
bool ByteStream::input_ended() const { return _end_input; }
size_t ByteStream::buffer_size() const { return _queue.size(); }
bool ByteStream::buffer_empty() const { return _queue.empty(); }
bool ByteStream::eof() const { return input_ended() && buffer_empty();}
size_t ByteStream::bytes_written() const { return _written_size; }
size_t ByteStream::bytes_read() const { return _read_size;}
size_t ByteStream::remaining_capacity() const { return _capacity_size - _queue.size();}
byte_stream.hh
#ifndef SPONGE_LIBSPONGE_BYTE_STREAM_HH
#define SPONGE_LIBSPONGE_BYTE_STREAM_HH
#include <deque>
#include <string>
//! \brief An in-order byte stream.
//! Bytes are written on the "input" side and read from the "output"
//! side. The byte stream is finite: the writer can end the input,
//! and then no more bytes can be written.
class ByteStream {
private:
// Your code here -- add private members as necessary.
// Hint: This doesn't need to be a sophisticated data structure at
// all, but if any of your tests are taking longer than a second,
// that's a sign that you probably want to keep exploring
// different approaches.
std::deque<char> _queue;
size_t _capacity_size;
size_t _written_size;
size_t _read_size;
bool _end_input;
bool _error{}; //!< Flag indicating that the stream suffered an error.
public:
//! Construct a stream with room for `capacity` bytes.
ByteStream(const size_t capacity);
//! \name "Input" interface for the writer
//!@{
//! Write a string of bytes into the stream. Write as many
//! as will fit, and return how many were written.
//! \returns the number of bytes accepted into the stream
size_t write(const std::string &data);
//! \returns the number of additional bytes that the stream has space for
size_t remaining_capacity() const;
//! Signal that the byte stream has reached its ending
void end_input();
//! Indicate that the stream suffered an error.
void set_error() { _error = true; }
//!@}
//! \name "Output" interface for the reader
//!@{
//! Peek at next "len" bytes of the stream
//! \returns a string
std::string peek_output(const size_t len) const;
//! Remove bytes from the buffer
void pop_output(const size_t len);
//! Read (i.e., copy and then pop) the next "len" bytes of the stream
//! \returns a string
std::string read(const size_t len);
//! \returns `true` if the stream input has ended
bool input_ended() const;
//! \returns `true` if the stream has suffered an error
bool error() const { return _error; }
//! \returns the maximum amount that can currently be read from the stream
size_t buffer_size() const;
//! \returns `true` if the buffer is empty
bool buffer_empty() const;
//! \returns `true` if the output has reached the ending
bool eof() const;
//!@}
//! \name General accounting
//!@{
//! Total number of bytes written
size_t bytes_written() const;
//! Total number of bytes popped
size_t bytes_read() const;
//!@}
};
#endif // SPONGE_LIBSPONGE_BYTE_STREAM_HH