代码输出结果
var obj = {
say: function() {
var f1 = () => {
console.log("1111", this);
}
f1();
},
pro: {
getPro:() => {
console.log(this);
}
}
}
var o = obj.say;
o();
obj.say();
obj.pro.getPro();
输出结果:
1111 window对象
1111 obj对象
window对象
解析:
- o(),o是在全局执行的,而f1是箭头函数,它是没有绑定this的,它的this指向其父级的this,其父级say方法的this指向的是全局作用域,所以会打印出window;
- obj.say(),谁调用say,say 的this就指向谁,所以此时this指向的是obj对象;
- obj.pro.getPro(),我们知道,箭头函数时不绑定this的,getPro处于pro中,而对象不构成单独的作用域,所以箭头的函数的this就指向了全局作用域window。
什么是margin重叠问题?如何解决?
问题描述: 两个块级元素的上外边距和下外边距可能会合并(折叠)为一个外边距,其大小会取其中外边距值大的那个,这种行为就是外边距折叠。需要注意的是,浮动的元素和绝对定位这种脱离文档流的元素的外边距不会折叠。重叠只会出现在垂直方向。
计算原则: 折叠合并后外边距的计算原则如下:
- 如果两者都是正数,那么就去最大者
- 如果是一正一负,就会正值减去负值的绝对值
- 两个都是负值时,用0减去两个中绝对值大的那个
解决办法: 对于折叠的情况,主要有两种:兄弟之间重叠和父子之间重叠 (1)兄弟之间重叠
- 底部元素变为行内盒子:
display: inline-block - 底部元素设置浮动:
float - 底部元素的position的值为
absolute/fixed
(2)父子之间重叠
- 父元素加入:
overflow: hidden - 父元素添加透明边框:
border:1px solid transparent - 子元素变为行内盒子:
display: inline-block - 子元素加入浮动属性或定位
强类型语言和弱类型语言的区别
- 强类型语言:强类型语言也称为强类型定义语言,是一种总是强制类型定义的语言,要求变量的使用要严格符合定义,所有变量都必须先定义后使用。Java和C++等语言都是强制类型定义的,也就是说,一旦一个变量被指定了某个数据类型,如果不经过强制转换,那么它就永远是这个数据类型了。例如你有一个整数,如果不显式地进行转换,你不能将其视为一个字符串。
- 弱类型语言:弱类型语言也称为弱类型定义语言,与强类型定义相反。JavaScript语言就属于弱类型语言。简单理解就是一种变量类型可以被忽略的语言。比如JavaScript是弱类型定义的,在JavaScript中就可以将字符串'12'和整数3进行连接得到字符串'123',在相加的时候会进行强制类型转换。
两者对比:强类型语言在速度上可能略逊色于弱类型语言,但是强类型语言带来的严谨性可以有效地帮助避免许多错误。
display:none与visibility:hidden的区别
这两个属性都是让元素隐藏,不可见。两者区别如下:
(1)在渲染树中
display:none会让元素完全从渲染树中消失,渲染时不会占据任何空间;visibility:hidden不会让元素从渲染树中消失,渲染的元素还会占据相应的空间,只是内容不可见。
(2)是否是继承属性
display:none是非继承属性,子孙节点会随着父节点从渲染树消失,通过修改子孙节点的属性也无法显示;visibility:hidden是继承属性,子孙节点消失是由于继承了hidden,通过设置visibility:visible可以让子孙节点显示; (3)修改常规文档流中元素的display通常会造成文档的重排,但是修改visibility属性只会造成本元素的重绘;
(4)如果使用读屏器,设置为display:none的内容不会被读取,设置为visibility:hidden的内容会被读取。
Compositon api
Composition API也叫组合式API,是Vue3.x的新特性。
通过创建 Vue 组件,我们可以将接口的可重复部分及其功能提取到可重用的代码段中。仅此一项就可以使我们的应用程序在可维护性和灵活性方面走得更远。然而,我们的经验已经证明,光靠这一点可能是不够的,尤其是当你的应用程序变得非常大的时候——想想几百个组件。在处理如此大的应用程序时,共享和重用代码变得尤为重要
- Vue2.0中,随着功能的增加,组件变得越来越复杂,越来越难维护,而难以维护的根本原因是Vue的API设计迫使开发者使用
watch,computed,methods选项组织代码,而不是实际的业务逻辑。 - 另外Vue2.0缺少一种较为简洁的低成本的机制来完成逻辑复用,虽然可以
minxis完成逻辑复用,但是当mixin变多的时候,会使得难以找到对应的data、computed或者method来源于哪个mixin,使得类型推断难以进行。 - 所以
Composition API的出现,主要是也是为了解决Option API带来的问题,第一个是代码组织问题,Compostion API可以让开发者根据业务逻辑组织自己的代码,让代码具备更好的可读性和可扩展性,也就是说当下一个开发者接触这一段不是他自己写的代码时,他可以更好的利用代码的组织反推出实际的业务逻辑,或者根据业务逻辑更好的理解代码。 - 第二个是实现代码的逻辑提取与复用,当然
mixin也可以实现逻辑提取与复用,但是像前面所说的,多个mixin作用在同一个组件时,很难看出property是来源于哪个mixin,来源不清楚,另外,多个mixin的property存在变量命名冲突的风险。而Composition API刚好解决了这两个问题。
通俗的讲:
没有Composition API之前vue相关业务的代码需要配置到option的特定的区域,中小型项目是没有问题的,但是在大型项目中会导致后期的维护性比较复杂,同时代码可复用性不高。Vue3.x中的composition-api就是为了解决这个问题而生的
compositon api提供了以下几个函数:
setuprefreactivewatchEffectwatchcomputedtoRefs- 生命周期的
hooks
都说Composition API与React Hook很像,说说区别
从React Hook的实现角度看,React Hook是根据useState调用的顺序来确定下一次重渲染时的state是来源于哪个useState,所以出现了以下限制
- 不能在循环、条件、嵌套函数中调用Hook
- 必须确保总是在你的React函数的顶层调用Hook
useEffect、useMemo等函数必须手动确定依赖关系
而Composition API是基于Vue的响应式系统实现的,与React Hook的相比
- 声明在
setup函数内,一次组件实例化只调用一次setup,而React Hook每次重渲染都需要调用Hook,使得React的GC比Vue更有压力,性能也相对于Vue来说也较慢 Compositon API的调用不需要顾虑调用顺序,也可以在循环、条件、嵌套函数中使用- 响应式系统自动实现了依赖收集,进而组件的部分的性能优化由Vue内部自己完成,而
React Hook需要手动传入依赖,而且必须必须保证依赖的顺序,让useEffect、useMemo等函数正确的捕获依赖变量,否则会由于依赖不正确使得组件性能下降。
虽然
Compositon API看起来比React Hook好用,但是其设计思想也是借鉴React Hook的。
如何使用for...of遍历对象
for…of是作为ES6新增的遍历方式,允许遍历一个含有iterator接口的数据结构(数组、对象等)并且返回各项的值,普通的对象用for..of遍历是会报错的。
如果需要遍历的对象是类数组对象,用Array.from转成数组即可。
var obj = {
0:'one',
1:'two',
length: 2
};
obj = Array.from(obj);
for(var k of obj){
console.log(k)
}
如果不是类数组对象,就给对象添加一个[Symbol.iterator]属性,并指向一个迭代器即可。
//方法一:
var obj = {
a:1,
b:2,
c:3
};
obj[Symbol.iterator] = function(){
var keys = Object.keys(this);
var count = 0;
return {
next(){
if(count<keys.length){
return {value: obj[keys[count++]],done:false};
}else{
return {value:undefined,done:true};
}
}
}
};
for(var k of obj){
console.log(k);
}
// 方法二
var obj = {
a:1,
b:2,
c:3
};
obj[Symbol.iterator] = function*(){
var keys = Object.keys(obj);
for(var k of keys){
yield [k,obj[k]]
}
};
for(var [k,v] of obj){
console.log(k,v);
}
POST和PUT请求的区别
- PUT请求是向服务器端发送数据,从而修改数据的内容,但是不会增加数据的种类等,也就是说无论进行多少次PUT操作,其结果并没有不同。(可以理解为时更新数据)
- POST请求是向服务器端发送数据,该请求会改变数据的种类等资源,它会创建新的内容。(可以理解为是创建数据)
Proxy 可以实现什么功能?
在 Vue3.0 中通过 Proxy 来替换原本的 Object.defineProperty 来实现数据响应式。
Proxy 是 ES6 中新增的功能,它可以用来自定义对象中的操作。
let p = new Proxy(target, handler)
target 代表需要添加代理的对象,handler 用来自定义对象中的操作,比如可以用来自定义 set 或者 get 函数。
下面来通过 Proxy 来实现一个数据响应式:
let onWatch = (obj, setBind, getLogger) => {
let handler = {
get(target, property, receiver) {
getLogger(target, property)
return Reflect.get(target, property, receiver)
},
set(target, property, value, receiver) {
setBind(value, property)
return Reflect.set(target, property, value)
}
}
return new Proxy(obj, handler)
}
let obj = { a: 1 }
let p = onWatch(
obj,
(v, property) => {
console.log(`监听到属性${property}改变为${v}`)
},
(target, property) => {
console.log(`'${property}' = ${target[property]}`)
}
)
p.a = 2 // 监听到属性a改变
p.a // 'a' = 2
在上述代码中,通过自定义 set 和 get 函数的方式,在原本的逻辑中插入了我们的函数逻辑,实现了在对对象任何属性进行读写时发出通知。
当然这是简单版的响应式实现,如果需要实现一个 Vue 中的响应式,需要在 get 中收集依赖,在 set 派发更新,之所以 Vue3.0 要使用 Proxy 替换原本的 API 原因在于 Proxy 无需一层层递归为每个属性添加代理,一次即可完成以上操作,性能上更好,并且原本的实现有一些数据更新不能监听到,但是 Proxy 可以完美监听到任何方式的数据改变,唯一缺陷就是浏览器的兼容性不好。
CSS选择器及其优先级
| 选择器 | 格式 | 优先级权重 |
|---|---|---|
| id选择器 | #id | 100 |
| 类选择器 | #classname | 10 |
| 属性选择器 | a[ref=“eee”] | 10 |
| 伪类选择器 | li:last-child | 10 |
| 标签选择器 | div | 1 |
| 伪元素选择器 | li:after | 1 |
| 相邻兄弟选择器 | h1+p | 0 |
| 子选择器 | ul>li | 0 |
| 后代选择器 | li a | 0 |
| 通配符选择器 | * | 0 |
对于选择器的优先级:
- 标签选择器、伪元素选择器:1
- 类选择器、伪类选择器、属性选择器:10
- id 选择器:100
- 内联样式:1000
注意事项:
- !important声明的样式的优先级最高;
- 如果优先级相同,则最后出现的样式生效;
- 继承得到的样式的优先级最低;
- 通用选择器(*)、子选择器(>)和相邻同胞选择器(+)并不在这四个等级中,所以它们的权值都为 0 ;
- 样式表的来源不同时,优先级顺序为:内联样式 > 内部样式 > 外部样式 > 浏览器用户自定义样式 > 浏览器默认样式。
伪元素和伪类的区别和作用?
- 伪元素:在内容元素的前后插入额外的元素或样式,但是这些元素实际上并不在文档中生成。它们只在外部显示可见,但不会在文档的源代码中找到它们,因此,称为“伪”元素。例如:
p::before {content:"第一章:";}
p::after {content:"Hot!";}
p::first-line {background:red;}
p::first-letter {font-size:30px;}
- 伪类:将特殊的效果添加到特定选择器上。它是已有元素上添加类别的,不会产生新的元素。例如:
a:hover {color: #FF00FF}
p:first-child {color: red}
总结: 伪类是通过在元素选择器上加⼊伪类改变元素状态,⽽伪元素通过对元素的操作进⾏对元素的改变。
TCP的重传机制
由于TCP的下层网络(网络层)可能出现丢失、重复或失序的情况,TCP协议提供可靠数据传输服务。为保证数据传输的正确性,TCP会重传其认为已丢失(包括报文中的比特错误)的包。TCP使用两套独立的机制来完成重传,一是基于时间,二是基于确认信息。
TCP在发送一个数据之后,就开启一个定时器,若是在这个时间内没有收到发送数据的ACK确认报文,则对该报文进行重传,在达到一定次数还没有成功时放弃并发送一个复位信号。
箭头函数的this指向哪⾥?
箭头函数不同于传统JavaScript中的函数,箭头函数并没有属于⾃⼰的this,它所谓的this是捕获其所在上下⽂的 this 值,作为⾃⼰的 this 值,并且由于没有属于⾃⼰的this,所以是不会被new调⽤的,这个所谓的this也不会被改变。
可以⽤Babel理解⼀下箭头函数:
// ES6
const obj = {
getArrow() {
return () => {
console.log(this === obj);
};
}
}
转化后:
// ES5,由 Babel 转译
var obj = {
getArrow: function getArrow() {
var _this = this;
return function () {
console.log(_this === obj);
};
}
};
内存泄露
- 意外的全局变量: 无法被回收
- 定时器: 未被正确关闭,导致所引用的外部变量无法被释放
- 事件监听: 没有正确销毁 (低版本浏览器可能出现)
- 闭包
- 第一种情况是我们由于使用未声明的变量,而意外的创建了一个全局变量,而使这个变量一直留在内存中无法被回收。
- 第二种情况是我们设置了setInterval定时器,而忘记取消它,如果循环函数有对外部变量的引用的话,那么这个变量会被一直留在内存中,而无法被回收。
- 第三种情况是我们获取一个DOM元素的引用,而后面这个元素被删除,由于我们一直保留了对这个元素的引用,所以它也无法被回收。
- 第四种情况是不合理的使用闭包,从而导致某些变量一直被留在内存当中。
dom引用:dom元素被删除时,内存中的引用未被正确清空- 控制台
console.log打印的东西
可用
chrome中的timeline进行内存标记,可视化查看内存的变化情况,找出异常点。
Chrome 打开一个页面需要启动多少进程?分别有哪些进程?
打开 1 个页面至少需要 1 个网络进程、1 个浏览器进程、1 个 GPU 进程以及 1 个渲染进程,共 4 个;最新的 Chrome 浏览器包括:1 个浏览器(Browser)主进程、1 个 GPU 进程、1 个网络(NetWork)进程、多个渲染进程和多个插件进程。
浏览器进程:主要负责界面显示、用户交互、子进程管理,同时提供存储等功能。渲染进程:核心任务是将 HTML、CSS 和 JavaScript 转换为用户可以与之交互的网页,排版引擎 Blink 和 JavaScript 引擎 V8 都是运行在该进程中,默认情况下,Chrome 会为每个 Tab 标签创建一个渲染进程。出于安全考虑,渲染进程都是运行在沙箱模式下。GPU 进程:其实,Chrome 刚开始发布的时候是没有 GPU 进程的。而 GPU 的使用初衷是为了实现 3D CSS 的效果,只是随后网页、Chrome 的 UI 界面都选择采用 GPU 来绘制,这使得 GPU 成为浏览器普遍的需求。最后,Chrome 在其多进程架构上也引入了 GPU 进程。网络进程:主要负责页面的网络资源加载,之前是作为一个模块运行在浏览器进程里面的,直至最近才独立出来,成为一个单独的进程。插件进程:主要是负责插件的运行,因插件易崩溃,所以需要通过插件进程来隔离,以保证插件进程崩溃不会对浏览器和页面造成影响。
forEach和map方法有什么区别
这方法都是用来遍历数组的,两者区别如下:
- forEach()方法会针对每一个元素执行提供的函数,对数据的操作会改变原数组,该方法没有返回值;
- map()方法不会改变原数组的值,返回一个新数组,新数组中的值为原数组调用函数处理之后的值;
介绍一个HTTPS工作原理
我们可以把HTTPS理解成HTTPS = HTTP + SSL/TLS
TLS/SSL 的功能实现主要依赖于三类基本算法:
散列函数、对称加密和非对称加密,其利用非对称加密实现身份认证和密钥协商,对称加密算法采用协商的密钥对数据加密,基于散列函数验证信息的完整性。
1. 对称加密
加密和解密用同一个秘钥的加密方式叫做对称加密。Client客户端和Server端共用一套密钥,这样子的加密过程似乎很让人理解,但是随之会产生一些问题。
问题一: WWW万维网有许许多多的客户端,不可能都用秘钥A进行信息加密,这样子很不合理,所以解决办法就是使用一个客户端使用一个密钥进行加密。
问题二:既然不同的客户端使用不同的密钥,那么对称加密的密钥如何传输? 那么解决的办法只能是 一端生成一个秘钥,然后通过HTTP传输给另一端 ,那么这样子又会产生新的问题。
问题三: 这个传输密钥的过程,又如何保证加密?如果被中间人拦截,密钥也会被获取, 那么你会说对密钥再进行加密,那又怎么保存对密钥加密的过程,是加密的过程?
到这里,我们似乎想明白了,使用对称加密的方式,行不通,所以我们需要采用非对称加密👇
2. 非对称加密
通过上面的分析,对称加密的方式行不通,那么我们来梳理一下非对称加密。采用的算法是RSA,所以在一些文章中也会看见 传统RSA握手 ,基于现在TLS主流版本是1.2,所以接下来梳理的是 TLS/1.2握手过程 。
非对称加密中,我们需要明确的点是👇
- 有一对秘钥,公钥和 私钥 。
- 公钥加密的内容,只有私钥可以解开,私钥加密的内容,所有的公钥都可以解开,这里说的 公钥都可以解开,指的是一对秘钥 。
- 公钥可以发送给所有的客户端,私钥只保存在服务器端。
3. 主要工作流程
梳理起来,可以把TLS 1.2 握手过程分为主要的五步👇
- 步骤一:Client发起一个HTTPS请求,连接443端口。这个过程可以理解成是 请求公钥的过程 。
- 步骤二:Server端收到请求后,通过第三方机构私钥加密,会把数字证书(也可以认为是公钥证书)发送给Client。
- 步骤三:
- 浏览器安装后会自动带一些权威第三方机构公钥,使用匹配的公钥对数字签名进行解密。
- 根据签名生成的规则对网站信息进行本地签名生成,然后两者比对。
- 通过比对两者签名,匹配则说明认证通过,不匹配则获取证书失败。
- 步骤四:在安全拿到服务器公钥后,客户端Client随机生成一个 对称密钥 ,使用 服务器公钥 (证书的公钥)加密这个 对称密钥 ,发送给Server(服务器)。
- 步骤五:Server(服务器)通过自己的私钥,对信息解密,至此得到了 对称密钥 ,此时两者都拥有了相同的 对称密钥 。
接下来,就可以通过该对称密钥对传输的信息加密/解密啦,从上面图举个例子👇
- Client用户使用该对称密钥加密'明文内容B',发送给Server(服务器)
- Server使用该对称密钥进行解密消息,得到明文内容B。
接下来考虑一个问题,如果公钥被中间人拿到纂改怎么办呢?
客户端可能拿到的公钥是假的,解决办法是什么呢?
3. 第三方认证
客户端无法识别传回公钥是中间人的,还是服务器的,这是问题的根本,我们是不是可以通过某种规范可以让客户端和服务器都遵循某种约定呢?那就是通过第三方认证的方式
在HTTPS中,通过 证书 + 数字签名来解决这个问题。
这里唯一不同的是,假设对网站信息加密的算法是MD5,通过MD5加密后, 然后通过第三方机构的私钥再次对其加密,生成数字签名 。
这样子的话,数字证书包含有两个特别重要的信息👉某网站公钥+数字签名
我们再次假设中间人截取到服务器的公钥后,去替换成自己的公钥,因为有数字签名的存在,这样子客户端验证发现数字签名不匹配,这样子就防止中间人替换公钥的问题。
那么客户端是如何去对比两者数字签名的呢?
- 浏览器会去安装一些比较权威的第三方认证机构的公钥,比如VeriSign、Symantec以及GlobalSign等等。
- 验证数字签名的时候,会直接从本地拿到相应的第三方的公钥,对私钥加密后的数字签名进行解密得到真正的签名。
- 然后客户端利用签名生成规则进行签名生成,看两个签名是否匹配,如果匹配认证通过,不匹配则获取证书失败。
4. 数字签名作用
数字签名:将网站的信息,通过特定的算法加密,比如MD5,加密之后,再通过服务器的私钥进行加密,形成 加密后的数字签名 。
第三方认证机构是一个公开的平台,中间人可以去获取。
如果没有数字签名的话,这样子可以就会有下面情况👇
从上面我们知道,如果只是对网站信息进行第三方机构私钥加密的话,还是会受到欺骗。
因为没有认证,所以中间人也向第三方认证机构进行申请,然后拦截后把所有的信息都替换成自己的,客户端仍然可以解密,并且无法判断这是服务器的还是中间人的,最后造成数据泄露。
5. 总结
- HTTPS就是使用SSL/TLS协议进行加密传输
- 大致流程:客户端拿到服务器的公钥(是正确的),然后客户端随机生成一个 对称加密的秘钥 ,使用该公钥加密,传输给服务端,服务端再通过解密拿到该 对称秘钥 ,后续的所有信息都通过该对称秘钥进行加密解密,完成整个HTTPS的流程。
- 第三方认证 ,最重要的是 数字签名 ,避免了获取的公钥是中间人的。
对Flex布局的理解及其使用场景
Flex是FlexibleBox的缩写,意为"弹性布局",用来为盒状模型提供最大的灵活性。任何一个容器都可以指定为Flex布局。行内元素也可以使用Flex布局。注意,设为Flex布局以后,子元素的float、clear和vertical-align属性将失效。采用Flex布局的元素,称为Flex容器(flex container),简称"容器"。它的所有子元素自动成为容器成员,称为Flex项目(flex item),简称"项目"。容器默认存在两根轴:水平的主轴(main axis)和垂直的交叉轴(cross axis),项目默认沿水平主轴排列。
以下6个属性设置在容器上:
- flex-direction属性决定主轴的方向(即项目的排列方向)。
- flex-wrap属性定义,如果一条轴线排不下,如何换行。
- flex-flow属性是flex-direction属性和flex-wrap属性的简写形式,默认值为row nowrap。
- justify-content属性定义了项目在主轴上的对齐方式。
- align-items属性定义项目在交叉轴上如何对齐。
- align-content属性定义了多根轴线的对齐方式。如果项目只有一根轴线,该属性不起作用。
以下6个属性设置在项目上:
- order属性定义项目的排列顺序。数值越小,排列越靠前,默认为0。
- flex-grow属性定义项目的放大比例,默认为0,即如果存在剩余空间,也不放大。
- flex-shrink属性定义了项目的缩小比例,默认为1,即如果空间不足,该项目将缩小。
- flex-basis属性定义了在分配多余空间之前,项目占据的主轴空间。浏览器根据这个属性,计算主轴是否有多余空间。它的默认值为auto,即项目的本来大小。
- flex属性是flex-grow,flex-shrink和flex-basis的简写,默认值为0 1 auto。
- align-self属性允许单个项目有与其他项目不一样的对齐方式,可覆盖align-items属性。默认值为auto,表示继承父元素的align-items属性,如果没有父元素,则等同于stretch。
简单来说: flex布局是CSS3新增的一种布局方式,可以通过将一个元素的display属性值设置为flex从而使它成为一个flex容器,它的所有子元素都会成为它的项目。一个容器默认有两条轴:一个是水平的主轴,一个是与主轴垂直的交叉轴。可以使用flex-direction来指定主轴的方向。可以使用justify-content来指定元素在主轴上的排列方式,使用align-items来指定元素在交叉轴上的排列方式。还可以使用flex-wrap来规定当一行排列不下时的换行方式。对于容器中的项目,可以使用order属性来指定项目的排列顺序,还可以使用flex-grow来指定当排列空间有剩余的时候,项目的放大比例,还可以使用flex-shrink来指定当排列空间不足时,项目的缩小比例。
CSS 优化和提高性能的方法有哪些?
加载性能:
(1)css压缩:将写好的css进行打包压缩,可以减小文件体积。
(2)css单一样式:当需要下边距和左边距的时候,很多时候会选择使用 margin:top 0 bottom 0;但margin-bottom:bottom;margin-left:left;执行效率会更高。
(3)减少使用@import,建议使用link,因为后者在页面加载时一起加载,前者是等待页面加载完成之后再进行加载。
选择器性能:
(1)关键选择器(key selector)。选择器的最后面的部分为关键选择器(即用来匹配目标元素的部分)。CSS选择符是从右到左进行匹配的。当使用后代选择器的时候,浏览器会遍历所有子元素来确定是否是指定的元素等等;
(2)如果规则拥有ID选择器作为其关键选择器,则不要为规则增加标签。过滤掉无关的规则(这样样式系统就不会浪费时间去匹配它们了)。
(3)避免使用通配规则,如*{}计算次数惊人,只对需要用到的元素进行选择。
(4)尽量少的去对标签进行选择,而是用class。
(5)尽量少的去使用后代选择器,降低选择器的权重值。后代选择器的开销是最高的,尽量将选择器的深度降到最低,最高不要超过三层,更多的使用类来关联每一个标签元素。
(6)了解哪些属性是可以通过继承而来的,然后避免对这些属性重复指定规则。
渲染性能:
(1)慎重使用高性能属性:浮动、定位。
(2)尽量减少页面重排、重绘。
(3)去除空规则:{}。空规则的产生原因一般来说是为了预留样式。去除这些空规则无疑能减少css文档体积。
(4)属性值为0时,不加单位。
(5)属性值为浮动小数0.**,可以省略小数点之前的0。
(6)标准化各种浏览器前缀:带浏览器前缀的在前。标准属性在后。
(7)不使用@import前缀,它会影响css的加载速度。
(8)选择器优化嵌套,尽量避免层级过深。
(9)css雪碧图,同一页面相近部分的小图标,方便使用,减少页面的请求次数,但是同时图片本身会变大,使用时,优劣考虑清楚,再使用。
(10)正确使用display的属性,由于display的作用,某些样式组合会无效,徒增样式体积的同时也影响解析性能。
(11)不滥用web字体。对于中文网站来说WebFonts可能很陌生,国外却很流行。web fonts通常体积庞大,而且一些浏览器在下载web fonts时会阻塞页面渲染损伤性能。
可维护性、健壮性:
(1)将具有相同属性的样式抽离出来,整合并通过class在页面中进行使用,提高css的可维护性。
(2)样式与内容分离:将css代码定义到外部css中。
如何提取高度嵌套的对象里的指定属性?
有时会遇到一些嵌套程度非常深的对象:
const school = {
classes: {
stu: {
name: 'Bob',
age: 24,
}
}
}
像此处的 name 这个变量,嵌套了四层,此时如果仍然尝试老方法来提取它:
const { name } = school
显然是不奏效的,因为 school 这个对象本身是没有 name 这个属性的,name 位于 school 对象的“儿子的儿子”对象里面。要想把 name 提取出来,一种比较笨的方法是逐层解构:
const { classes } = school
const { stu } = classes
const { name } = stu
name // 'Bob'
但是还有一种更标准的做法,可以用一行代码来解决这个问题:
const { classes: { stu: { name } }} = school
console.log(name) // 'Bob'
可以在解构出来的变量名右侧,通过冒号+{目标属性名}这种形式,进一步解构它,一直解构到拿到目标数据为止。
Promise解决了什么问题
在工作中经常会碰到这样一个需求,比如我使用ajax发一个A请求后,成功后拿到数据,需要把数据传给B请求;那么需要如下编写代码:
let fs = require('fs')
fs.readFile('./a.txt','utf8',function(err,data){
fs.readFile(data,'utf8',function(err,data){
fs.readFile(data,'utf8',function(err,data){
console.log(data)
})
})
})
上面的代码有如下缺点:
- 后一个请求需要依赖于前一个请求成功后,将数据往下传递,会导致多个ajax请求嵌套的情况,代码不够直观。
- 如果前后两个请求不需要传递参数的情况下,那么后一个请求也需要前一个请求成功后再执行下一步操作,这种情况下,那么也需要如上编写代码,导致代码不够直观。
Promise出现之后,代码变成这样:
let fs = require('fs')
function read(url){
return new Promise((resolve,reject)=>{
fs.readFile(url,'utf8',function(error,data){
error && reject(error)
resolve(data)
})
})
}
read('./a.txt').then(data=>{
return read(data)
}).then(data=>{
return read(data)
}).then(data=>{
console.log(data)
})
这样代码看起了就简洁了很多,解决了地狱回调的问题。
// 写法1-不保存参数,递归局部函数
function curry(fn) {
let judge = (...args) => {
// 递归结束条件
if(args.length === fn.length) return fn(...args);
return (...arg) => judge(...args, ...arg);
}
return judge;
}
// 写法2-保存参数,递归整体函数
function curry(fn) {
// 保存参数,除去第一个函数参数
let presentArgs = [].slice.call(arguments, 1);
// 返回一个新函数
return function(){
// 新函数调用时会继续传参
let allArgs = [...presentArgs, ...arguments];
// 递归结束条件
if(allArgs.length === fn.length) {
// 如果参数够了,就执行原函数
return fn(,,,allArgs);
}
// 否则继续柯里化
else return curry(fn, ...allArgs);
}
}
// 测试
function add(a, b, c, d) {
return a + b + c + d;
}
console.log(add(1, 2, 3, 4));
let addCurry = curry(add);
// 以下结果都返回 10
console.log(addCurry(1)(2)(3)(4));
console.log(addCurry(1)(2, 3, 4));
console.log(addCurry(1, 2)(3)(4));
console.log(addCurry(1, 2)(3, 4));
console.log(addCurry(1, 2, 3)(4));
console.log(addCurry(1, 2, 3, 4));
二分查找--时间复杂度 log2(n)
题目描述:如何确定一个数在一个有序数组中的位置
实现代码如下:
function search(arr, target, start, end) {
let targetIndex = -1;
let mid = Math.floor((start + end) / 2);
if (arr[mid] === target) {
targetIndex = mid;
return targetIndex;
}
if (start >= end) {
return targetIndex;
}
if (arr[mid] < target) {
return search(arr, target, mid + 1, end);
} else {
return search(arr, target, start, mid - 1);
}
}
// const dataArr = [1, 2, 3, 4, 5, 6, 7, 8, 9];
// const position = search(dataArr, 6, 0, dataArr.length - 1);
// if (position !== -1) {
// console.log(`目标元素在数组中的位置:${position}`);
// } else {
// console.log("目标元素不在数组中");
// }
对JSON的理解
JSON 是一种基于文本的轻量级的数据交换格式。它可以被任何的编程语言读取和作为数据格式来传递。
在项目开发中,使用 JSON 作为前后端数据交换的方式。在前端通过将一个符合 JSON 格式的数据结构序列化为 JSON 字符串,然后将它传递到后端,后端通过 JSON 格式的字符串解析后生成对应的数据结构,以此来实现前后端数据的一个传递。
因为 JSON 的语法是基于 js 的,因此很容易将 JSON 和 js 中的对象弄混,但是应该注意的是 JSON 和 js 中的对象不是一回事,JSON 中对象格式更加严格,比如说在 JSON 中属性值不能为函数,不能出现 NaN 这样的属性值等,因此大多数的 js 对象是不符合 JSON 对象的格式的。
在 js 中提供了两个函数来实现 js 数据结构和 JSON 格式的转换处理,
- JSON.stringify 函数,通过传入一个符合 JSON 格式的数据结构,将其转换为一个 JSON 字符串。如果传入的数据结构不符合 JSON 格式,那么在序列化的时候会对这些值进行对应的特殊处理,使其符合规范。在前端向后端发送数据时,可以调用这个函数将数据对象转化为 JSON 格式的字符串。
- JSON.parse() 函数,这个函数用来将 JSON 格式的字符串转换为一个 js 数据结构,如果传入的字符串不是标准的 JSON 格式的字符串的话,将会抛出错误。当从后端接收到 JSON 格式的字符串时,可以通过这个方法来将其解析为一个 js 数据结构,以此来进行数据的访问。
vue 和 react技术选型
相同点:
- 数据驱动页面,提供响应式的试图组件
- 都有virtual DOM,组件化的开发,通过props参数进行父子之间组件传递数据,都实现了webComponents规范
- 数据流动单向,都支持服务器的渲染SSR
- 都有支持native的方法,react有React native, vue有wexx
不同点:
- 数据绑定:Vue实现了双向的数据绑定,react数据流动是单向的
- 数据渲染:大规模的数据渲染,react更快
- 使用场景:React配合Redux架构适合大规模多人协作复杂项目,Vue适合小快的项目
- 开发风格:react推荐做法jsx + inline style把html和css都写在js了
vue是采用webpack +vue-loader单文件组件格式,html, js, css同一个文件
如何获取安全的 undefined 值?
因为 undefined 是一个标识符,所以可以被当作变量来使用和赋值,但是这样会影响 undefined 的正常判断。表达式 void ___ 没有返回值,因此返回结果是 undefined。void 并不改变表达式的结果,只是让表达式不返回值。因此可以用 void 0 来获得 undefined。
display:none与visibility:hidden的区别
这两个属性都是让元素隐藏,不可见。两者区别如下:
(1)在渲染树中
display:none会让元素完全从渲染树中消失,渲染时不会占据任何空间;visibility:hidden不会让元素从渲染树中消失,渲染的元素还会占据相应的空间,只是内容不可见。
(2)是否是继承属性
display:none是非继承属性,子孙节点会随着父节点从渲染树消失,通过修改子孙节点的属性也无法显示;visibility:hidden是继承属性,子孙节点消失是由于继承了hidden,通过设置visibility:visible可以让子孙节点显示; (3)修改常规文档流中元素的display通常会造成文档的重排,但是修改visibility属性只会造成本元素的重绘;
(4)如果使用读屏器,设置为display:none的内容不会被读取,设置为visibility:hidden的内容会被读取。
浏览器是如何对 HTML5 的离线储存资源进行管理和加载?
- 在线的情况下,浏览器发现 html 头部有 manifest 属性,它会请求 manifest 文件,如果是第一次访问页面 ,那么浏览器就会根据 manifest 文件的内容下载相应的资源并且进行离线存储。如果已经访问过页面并且资源已经进行离线存储了,那么浏览器就会使用离线的资源加载页面,然后浏览器会对比新的 manifest 文件与旧的 manifest 文件,如果文件没有发生改变,就不做任何操作,如果文件改变了,就会重新下载文件中的资源并进行离线存储。
- 离线的情况下,浏览器会直接使用离线存储的资源。
层叠上下文
元素提升为一个比较特殊的图层,在三维空间中 (z轴) 高出普通元素一等。
触发条件
- 根层叠上下文(
html) positioncss3属性flextransformopacityfilterwill-changewebkit-overflow-scrolling
层叠等级:层叠上下文在z轴上的排序
- 在同一层叠上下文中,层叠等级才有意义
z-index的优先级最高
原型修改、重写
function Person(name) {
this.name = name
}
// 修改原型
Person.prototype.getName = function() {}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
// 重写原型
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // false
可以看到修改原型的时候p的构造函数不是指向Person了,因为直接给Person的原型对象直接用对象赋值时,它的构造函数指向的了根构造函数Object,所以这时候p.constructor === Object ,而不是p.constructor === Person。要想成立,就要用constructor指回来:
Person.prototype = {
getName: function() {}
}
var p = new Person('hello')
p.constructor = Person
console.log(p.__proto__ === Person.prototype) // true
console.log(p.__proto__ === p.constructor.prototype) // true
new操作符的实现原理
new操作符的执行过程:
(1)首先创建了一个新的空对象
(2)设置原型,将对象的原型设置为函数的 prototype 对象。
(3)让函数的 this 指向这个对象,执行构造函数的代码(为这个新对象添加属性)
(4)判断函数的返回值类型,如果是值类型,返回创建的对象。如果是引用类型,就返回这个引用类型的对象。
具体实现:
function objectFactory() {
let newObject = null;
let constructor = Array.prototype.shift.call(arguments);
let result = null;
// 判断参数是否是一个函数
if (typeof constructor !== "function") {
console.error("type error");
return;
}
// 新建一个空对象,对象的原型为构造函数的 prototype 对象
newObject = Object.create(constructor.prototype);
// 将 this 指向新建对象,并执行函数
result = constructor.apply(newObject, arguments);
// 判断返回对象
let flag = result && (typeof result === "object" || typeof result === "function");
// 判断返回结果
return flag ? result : newObject;
}
// 使用方法
objectFactory(构造函数, 初始化参数);
如何判断一个对象是否属于某个类?
- 第一种方式,使用 instanceof 运算符来判断构造函数的 prototype 属性是否出现在对象的原型链中的任何位置。
- 第二种方式,通过对象的 constructor 属性来判断,对象的 constructor 属性指向该对象的构造函数,但是这种方式不是很安全,因为 constructor 属性可以被改写。
- 第三种方式,如果需要判断的是某个内置的引用类型的话,可以使用 Object.prototype.toString() 方法来打印对象的[[Class]] 属性来进行判断。
上下垂直居中方案
- 定高:
margin,position + margin(负值) - 不定高:
position+transform,flex,IFC + vertical-align:middle
/* 定高方案1 */
.center {
height: 100px;
margin: 50px 0;
}
/* 定高方案2 */
.center {
height: 100px;
position: absolute;
top: 50%;
margin-top: -25px;
}
/* 不定高方案1 */
.center {
position: absolute;
top: 50%;
transform: translateY(-50%);
}
/* 不定高方案2 */
.wrap {
display: flex;
align-items: center;
}
.center {
width: 100%;
}
/* 不定高方案3 */
/* 设置 inline-block 则会在外层产生 IFC,高度设为 100% 撑开 wrap 的高度 */
.wrap::before {
content: '';
height: 100%;
display: inline-block;
vertical-align: middle;
}
.wrap {
text-align: center;
}
.center {
display: inline-block;
vertical-align: middle;
}
z-index属性在什么情况下会失效
通常 z-index 的使用是在有两个重叠的标签,在一定的情况下控制其中一个在另一个的上方或者下方出现。z-index值越大就越是在上层。z-index元素的position属性需要是relative,absolute或是fixed。
z-index属性在下列情况下会失效:
- 父元素position为relative时,子元素的z-index失效。解决:父元素position改为absolute或static;
- 元素没有设置position属性为非static属性。解决:设置该元素的position属性为relative,absolute或是fixed中的一种;
- 元素在设置z-index的同时还设置了float浮动。解决:float去除,改为display:inline-block;
ajax、axios、fetch的区别
(1)AJAX Ajax 即“AsynchronousJavascriptAndXML”(异步 JavaScript 和 XML),是指一种创建交互式网页应用的网页开发技术。它是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新。这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行更新。传统的网页(不使用 Ajax)如果需要更新内容,必须重载整个网页页面。其缺点如下:
- 本身是针对MVC编程,不符合前端MVVM的浪潮
- 基于原生XHR开发,XHR本身的架构不清晰
- 不符合关注分离(Separation of Concerns)的原则
- 配置和调用方式非常混乱,而且基于事件的异步模型不友好。
(2)Fetch fetch号称是AJAX的替代品,是在ES6出现的,使用了ES6中的promise对象。Fetch是基于promise设计的。Fetch的代码结构比起ajax简单多。fetch不是ajax的进一步封装,而是原生js,没有使用XMLHttpRequest对象。
fetch的优点:
- 语法简洁,更加语义化
- 基于标准 Promise 实现,支持 async/await
- 更加底层,提供的API丰富(request, response)
- 脱离了XHR,是ES规范里新的实现方式
fetch的缺点:
- fetch只对网络请求报错,对400,500都当做成功的请求,服务器返回 400,500 错误码时并不会 reject,只有网络错误这些导致请求不能完成时,fetch 才会被 reject。
- fetch默认不会带cookie,需要添加配置项: fetch(url, {credentials: 'include'})
- fetch不支持abort,不支持超时控制,使用setTimeout及Promise.reject的实现的超时控制并不能阻止请求过程继续在后台运行,造成了流量的浪费
- fetch没有办法原生监测请求的进度,而XHR可以
(3)Axios Axios 是一种基于Promise封装的HTTP客户端,其特点如下:
- 浏览器端发起XMLHttpRequests请求
- node端发起http请求
- 支持Promise API
- 监听请求和返回
- 对请求和返回进行转化
- 取消请求
- 自动转换json数据
- 客户端支持抵御XSRF攻击
This
不同情况的调用,
this指向分别如何。顺带可以提一下es6中箭头函数没有this,arguments,super等,这些只依赖包含箭头函数最接近的函数
我们先来看几个函数调用的场景
function foo() {
console.log(this.a)
}
var a = 1
foo()
const obj = {
a: 2,
foo: foo
}
obj.foo()
const c = new foo()
- 对于直接调用
foo来说,不管foo函数被放在了什么地方,this一定是window - 对于
obj.foo()来说,我们只需要记住,谁调用了函数,谁就是this,所以在这个场景下foo函数中的this就是obj对象 - 对于
new的方式来说,this被永远绑定在了c上面,不会被任何方式改变this
说完了以上几种情况,其实很多代码中的
this应该就没什么问题了,下面让我们看看箭头函数中的this
function a() {
return () => {
return () => {
console.log(this)
}
}
}
console.log(a()()())
- 首先箭头函数其实是没有
this的,箭头函数中的this只取决包裹箭头函数的第一个普通函数的this。在这个例子中,因为包裹箭头函数的第一个普通函数是a,所以此时的this是window。另外对箭头函数使用bind这类函数是无效的。 - 最后种情况也就是
bind这些改变上下文的API了,对于这些函数来说,this取决于第一个参数,如果第一个参数为空,那么就是window。 - 那么说到
bind,不知道大家是否考虑过,如果对一个函数进行多次bind,那么上下文会是什么呢?
let a = {}
let fn = function () { console.log(this) }
fn.bind().bind(a)() // => ?
如果你认为输出结果是
a,那么你就错了,其实我们可以把上述代码转换成另一种形式
// fn.bind().bind(a) 等于
let fn2 = function fn1() {
return function() {
return fn.apply()
}.apply(a)
}
fn2()
可以从上述代码中发现,不管我们给函数
bind几次,fn中的this永远由第一次bind决定,所以结果永远是window
let a = { name: 'poetries' }
function foo() {
console.log(this.name)
}
foo.bind(a)() // => 'poetries'
以上就是
this的规则了,但是可能会发生多个规则同时出现的情况,这时候不同的规则之间会根据优先级最高的来决定this最终指向哪里。
首先,
new的方式优先级最高,接下来是bind这些函数,然后是obj.foo()这种调用方式,最后是foo这种调用方式,同时,箭头函数的this一旦被绑定,就不会再被任何方式所改变。
函数执行改变this
- 由于 JS 的设计原理: 在函数中,可以引用运行环境中的变量。因此就需要一个机制来让我们可以在函数体内部获取当前的运行环境,这便是
this。
因此要明白
this指向,其实就是要搞清楚 函数的运行环境,说人话就是,谁调用了函数。例如
obj.fn(),便是obj调用了函数,既函数中的this === objfn(),这里可以看成window.fn(),因此this === window
但这种机制并不完全能满足我们的业务需求,因此提供了三种方式可以手动修改
this的指向:
call: fn.call(target, 1, 2)apply: fn.apply(target, [1, 2])bind: fn.bind(target)(1,2)
原型链的终点是什么?如何打印出原型链的终点?
由于Object是构造函数,原型链终点是Object.prototype.__proto__,而Object.prototype.__proto__=== null // true,所以,原型链的终点是null。原型链上的所有原型都是对象,所有的对象最终都是由Object构造的,而Object.prototype的下一级是Object.prototype.__proto__。
同样是重定向,307,303,302的区别?
302是http1.0的协议状态码,在http1.1版本的时候为了细化302状态码⼜出来了两个303和307。 303明确表示客户端应当采⽤get⽅法获取资源,他会把POST请求变为GET请求进⾏重定向。 307会遵照浏览器标准,不会从post变为get。
实现 LazyMan
题目描述:
实现一个LazyMan,可以按照以下方式调用:
LazyMan(“Hank”)输出:
Hi! This is Hank!
LazyMan(“Hank”).sleep(10).eat(“dinner”)输出
Hi! This is Hank!
//等待10秒..
Wake up after 10
Eat dinner~
LazyMan(“Hank”).eat(“dinner”).eat(“supper”)输出
Hi This is Hank!
Eat dinner~
Eat supper~
LazyMan(“Hank”).eat(“supper”).sleepFirst(5)输出
//等待5秒
Wake up after 5
Hi This is Hank!
Eat supper
实现代码如下:
class _LazyMan {
constructor(name) {
this.tasks = [];
const task = () => {
console.log(`Hi! This is ${name}`);
this.next();
};
this.tasks.push(task);
setTimeout(() => {
// 把 this.next() 放到调用栈清空之后执行
this.next();
}, 0);
}
next() {
const task = this.tasks.shift(); // 取第一个任务执行
task && task();
}
sleep(time) {
this._sleepWrapper(time, false);
return this; // 链式调用
}
sleepFirst(time) {
this._sleepWrapper(time, true);
return this;
}
_sleepWrapper(time, first) {
const task = () => {
setTimeout(() => {
console.log(`Wake up after ${time}`);
this.next();
}, time * 1000);
};
if (first) {
this.tasks.unshift(task); // 放到任务队列顶部
} else {
this.tasks.push(task); // 放到任务队列尾部
}
}
eat(name) {
const task = () => {
console.log(`Eat ${name}`);
this.next();
};
this.tasks.push(task);
return this;
}
}
function LazyMan(name) {
return new _LazyMan(name);
}
变量提升
函数在运行的时候,会首先创建执行上下文,然后将执行上下文入栈,然后当此执行上下文处于栈顶时,开始运行执行上下文。
在创建执行上下文的过程中会做三件事:创建变量对象,创建作用域链,确定 this 指向,其中创建变量对象的过程中,首先会为 arguments 创建一个属性,值为 arguments,然后会扫码 function 函数声明,创建一个同名属性,值为函数的引用,接着会扫码 var 变量声明,创建一个同名属性,值为 undefined,这就是变量提升。
垃圾回收
- 对于在JavaScript中的字符串,对象,数组是没有固定大小的,只有当对他们进行动态分配存储时,解释器就会分配内存来存储这些数据,当JavaScript的解释器消耗完系统中所有可用的内存时,就会造成系统崩溃。
- 内存泄漏,在某些情况下,不再使用到的变量所占用内存没有及时释放,导致程序运行中,内存越占越大,极端情况下可以导致系统崩溃,服务器宕机。
- JavaScript有自己的一套垃圾回收机制,JavaScript的解释器可以检测到什么时候程序不再使用这个对象了(数据),就会把它所占用的内存释放掉。
- 针对JavaScript的来及回收机制有以下两种方法(常用):标记清除,引用计数
- 标记清除
v8 的垃圾回收机制基于分代回收机制,这个机制又基于世代假说,这个假说有两个特点,一是新生的对象容易早死,另一个是不死的对象会活得更久。基于这个假说,v8 引擎将内存分为了新生代和老生代。
- 新创建的对象或者只经历过一次的垃圾回收的对象被称为新生代。经历过多次垃圾回收的对象被称为老生代。
- 新生代被分为 From 和 To 两个空间,To 一般是闲置的。当 From 空间满了的时候会执行 Scavenge 算法进行垃圾回收。当我们执行垃圾回收算法的时候应用逻辑将会停止,等垃圾回收结束后再继续执行。
这个算法分为三步:
- 首先检查 From 空间的存活对象,如果对象存活则判断对象是否满足晋升到老生代的条件,如果满足条件则晋升到老生代。如果不满足条件则移动 To 空间。
- 如果对象不存活,则释放对象的空间。
- 最后将 From 空间和 To 空间角色进行交换。
新生代对象晋升到老生代有两个条件:
- 第一个是判断是对象否已经经过一次 Scavenge 回收。若经历过,则将对象从 From 空间复制到老生代中;若没有经历,则复制到 To 空间。
- 第二个是 To 空间的内存使用占比是否超过限制。当对象从 From 空间复制到 To 空间时,若 To 空间使用超过 25%,则对象直接晋升到老生代中。设置 25% 的原因主要是因为算法结束后,两个空间结束后会交换位置,如果 To 空间的内存太小,会影响后续的内存分配。
老生代采用了标记清除法和标记压缩法。标记清除法首先会对内存中存活的对象进行标记,标记结束后清除掉那些没有标记的对象。由于标记清除后会造成很多的内存碎片,不便于后面的内存分配。所以了解决内存碎片的问题引入了标记压缩法。
由于在进行垃圾回收的时候会暂停应用的逻辑,对于新生代方法由于内存小,每次停顿的时间不会太长,但对于老生代来说每次垃圾回收的时间长,停顿会造成很大的影响。 为了解决这个问题 V8 引入了增量标记的方法,将一次停顿进行的过程分为了多步,每次执行完一小步就让运行逻辑执行一会,就这样交替运行