【概率论基础进阶】大数定律和中心极限定理

137 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

切比雪夫不等式

切比雪夫不等式:设随机变量XX的数学期望E(X)E(X)和方差D(X)D(X)存在,则对任意的ϵ>0\epsilon >0,总有

P{XE(X)ϵ}D(X)ϵ2 P \left\{|X-E(X)|\geq \epsilon \right\}\leq \frac{D(X)}{\epsilon ^{2}}

这个不等式称为切比雪夫不等式

 

例1:设随机变量XX的概率密度f(x)={2e2xx>00x0f(x)=\left\{\begin{aligned}&2e^{-2x}&x>0\\&0&x \leq 0\end{aligned}\right.

  • 根据切比雪夫不等式估计P{X32}A,A=()\begin{aligned} P \left\{X \geq \frac{3}{2}\right\}\leq A,A=()\end{aligned}

 

XE(2)X \sim E(2),因此

P{X32}=P{X121}=P{X121}+P{X121}0=P{X121}=P{XEX1}DX12=14 \begin{aligned} P \left\{X \geq \frac{3}{2}\right\}&=P \left\{X - \frac{1}{2}\geq 1\right\}\\ &=P \left\{X- \frac{1}{2}\geq 1\right\}+\underbrace{P \left\{X- \frac{1}{2}\leq -1\right\}}_{0}\\ &=P \left\{\left|X- \frac{1}{2}\right|\leq 1\right\}\\ &=P \left\{|X-EX| \geq 1\right\}\leq \frac{DX}{1^{2}}=\frac{1}{4} \end{aligned}

 

  • 直接计算P{X32}=B,B=()\begin{aligned} P \left\{X \geq \frac{3}{2}\right\}=B,B=()\end{aligned}

 

根据指数分布

P{X>t}=eλt,t>0 P \left\{X>t\right\}=e^{\lambda t},t>0

因此

P{X32}=e232=e3 P \left\{X \geq \frac{3}{2}\right\}=e^{-2 \cdot \frac{3}{2}}=e^{-3}

 

e30.05\begin{aligned} e^{-3}\approx 0.05\end{aligned},而切比雪夫不等式估计的是0.25\begin{aligned} 0.25\end{aligned},显然是由一定差距的

 

例2:设XX的密度为f(x),DX=1f(x),DX=1,而YY的密度为f(y)f(-y),且XXYY的相关系数为14\begin{aligned} - \frac{1}{4}\end{aligned},用切比雪夫不等式估计P{X+Y2}()P \left\{|X+Y| \geq 2\right\}\leq ()

 

Z=X+YZ=X+Y,由切比雪夫不等式

P{ZEZϵ}DXϵ2P{(X+Y)E(X+Y)ϵ}D(X+Y)ϵ2 \begin{aligned} P \left\{|Z-EZ|\leq \epsilon \right\}&\leq \frac{DX}{\epsilon ^{2}}\\ P \left\{|(X+Y)-E(X+Y)|\leq \epsilon \right\}&\leq \frac{D(X+Y)}{\epsilon ^{2}} \end{aligned}
EY=+yf(y)dy=+(y)f(y)d(y)=y=t+tf(t)dt=EX \begin{aligned} EY&=\int_{-\infty}^{+\infty}yf(-y)dy\\ &=\int_{-\infty}^{+\infty}(-y)f(-y)d(-y)\\ &\overset{-y=t}{=}- \int_{-\infty}^{+\infty}tf(t)dt\\ &=-EX \end{aligned}

因此EZ=E(X+Y)=EX+EY=0EZ=E(X+Y)=EX+EY=0

DY=E(Y2)(EY)2=+y2f(y)dy(EX)2=y=t+(t)2f(t)d(t)(EX)2=E(X2)(EX)2=DXD(X+Y)=DX+DY+2cov(X,Y)=DX+DY+2DXDYρXY=1+112=32 \begin{aligned} DY&=E(Y^{2})-(EY)^{2}\\ &=\int_{-\infty}^{+\infty}y^{2}f(-y)dy-(-EX)^{2}\\ &\overset{-y=t}{=}\int_{+\infty}^{-\infty}(-t)^{2}f(t)d(-t)-(EX)^{2}\\ &=E(X^{2})-(EX)^{2}=DX\\ D(X+Y)&=DX+DY+2\text{cov}(X,Y)\\ &=DX+DY+2\sqrt{DX}\sqrt{DY}\cdot \rho_{XY}\\ &=1+1- \frac{1}{2}=\frac{3}{2} \end{aligned}

因此

P{X+Y2}=P{(X+Y)E(X+Y)2}D(X+Y)22=D(X+Y)4=38 \begin{aligned} P \left\{|X+Y|\leq 2\right\}&=P \left\{|(X+Y)-E(X+Y)|\leq 2\right\}\\ &\leq \frac{D(X+Y)}{2^{2}}=\frac{D(X+Y)}{4}=\frac{3}{8}\end{aligned}

大数定律

定义:设X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots是一个随机变量序列,AA是一个常数,如果对任意ϵ>0\epsilon >0,有

limnP{XnA<ϵ}=1 \lim\limits_{n\to\infty}P \left\{|X_{n}-A|<\epsilon \right\}=1

则称随机变量序列X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots依概率收敛域常数AA,记作XnPAX_{n}\overset{P}{\rightarrow }A

 

随机变量加减一个常数还是随机变量

 

切比雪夫大数定律:设X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots两两不相关的随机变量序列,存在常数CC使D(X1)C(i=1,2,)D(X_{1})\leq C(i=1,2,\cdots ),则对任意ϵ>0\epsilon >0,有

limnP{1ni=1nXi1ni=1nE(Xi)<ϵ}=1 \lim\limits_{n\to\infty}P\left\{\left| \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}- \frac{1}{n}\sum\limits_{i=1}^{n}E(X_{i})\right|< \epsilon \right\}=1

 

不太严谨的做题时可以写成1ni=1nxiP1ni=1nE(Xi)\begin{aligned} \frac{1}{n}\sum\limits_{i=1}^{n}x_{i}\overset{P}{\rightarrow } \frac{1}{n}\sum\limits_{i=1}^{n}E(X_{i})\end{aligned}

 

伯努利大数定理:设随机变量XnB(n,p),n=1,2,X_{n}\sim B(n,p),n=1,2,\cdots,则对于任意ϵ>0\epsilon >0,有

limnP{Xnnp<ϵ}=1 \lim\limits_{n\to\infty}P \left\{\left| \frac{X_{n}}{n}-p\right|<\epsilon \right\}=1

 

Xn=Y1+Y2++Yn,YiB(1,p)X_{n}=Y_{1}+Y_{2}+\cdots +Y_{n},Y_{i}\sim B(1,p),则有1ni=1nYi=XnnPp\begin{aligned} \frac{1}{n}\sum\limits_{i=1}^{n}Y_{i}=\frac{X_{n}}{n}\overset{P}{\rightarrow }p\end{aligned}

 

辛钦大数定律:设随机变量X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots独立同分布,具有数学期望E(Xi)=μ,i=1,2,E(X_{i})=\mu,i=1,2,\cdots,则对于任意ϵ>0\epsilon >0

limnP{1ni=1nXiμ<ϵ}=1 \lim\limits_{n\to\infty}P \left\{\left| \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}-\mu\right|<\epsilon \right\}=1

 

1ni=1nxiPμ\begin{aligned} \frac{1}{n}\sum\limits_{i=1}^{n}x_{i}\overset{P}{\rightarrow } \mu\end{aligned}

 

切比雪夫大数定律要求随机变量两两不相关,且方差存在

辛钦大数定律要求随机变量独立同分布,且期望存在

做题时看题目给出条件符合哪个,用哪个

 

例3:设随机变量X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots相互独立,均服从分布函数

F(x,θ)={1ex2θx00x<0,θ>0 F(x,\theta )=\left\{\begin{aligned}&1-e^{- \frac{x^{2}}{\theta }}&x \geq 0\\&0&x<0\end{aligned}\right.,\theta >0

是否存在实数aa,使得对任何ϵ>0\epsilon >0都有limnP{1ni=1nXi2aϵ}=0\begin{aligned} \lim\limits_{n\to\infty}P \left\{\left| \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-a\right|\geq \epsilon \right\}=0\end{aligned}

 

由题目可知

limnP{1ni=1nXi2aϵ}=0limnP{1ni=1nXi2a<ϵ}=1 \begin{aligned} \lim\limits_{n\to\infty}P \left\{\left| \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-a\right|\geq \epsilon \right\}=0\Rightarrow \lim\limits_{n\to\infty}P \left\{\left| \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-a\right|< \epsilon \right\}=1\end{aligned}

f(x;θ)=F(x;θ)={2xθex2θx00x<0EXi2=+x2f(x;θ)dx=0+x22xθex2θ=x2θ=tθ0+tetdt=θ \begin{aligned} f(x;\theta )&=F'(x;\theta )=\left\{\begin{aligned}& \frac{2x}{\theta }e^{- \frac{x^{2}}{\theta }}&x \geq 0\\&0&x<0\end{aligned}\right.\\ EX_{i}^{2}&=\int_{-\infty}^{+\infty}x^{2}f(x;\theta )dx\\ &=\int_{0}^{+\infty}x^{2}\cdot \frac{2x}{\theta }e^{- \frac{x^{2}}{\theta }}\\ &\overset{ \frac{x^{2}}{\theta }=t}{=}\theta \int_{0}^{+\infty}t e^{-t}dt=\theta \end{aligned}

因此期望EX12=θEX_{1}^{2}=\theta存在,又因为X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots相互独立,均服从同一分布函数,因此X12,X22,,Xn2,X_{1}^{2},X_{2}^{2},\cdots ,X_{n}^{2},\cdots独立同分布。根据辛钦大数定律,当nn \to \infty时,

1ni=1nXi2PEXi2=θ \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}\overset{P}{\rightarrow }EX^{2}_{i}=\theta

即对任何ϵ>0\epsilon >0,都有limnP{1ni=1nXi2aϵ}=0\begin{aligned} \lim\limits_{n\to\infty}P \left\{\left| \frac{1}{n}\sum\limits_{i=1}^{n}X_{i}^{2}-a\right|\geq \epsilon \right\}=0\end{aligned}

 

中心极限定理

列维-林德伯格中心极限定理:设随机变量X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots独立同分布,具有数学期望与方差,E(Xn)=μ,D(Xn)=σ2,n=12,E(X_{n})=\mu,D(X_{n})=\sigma^{2},n=12,\cdots,则对于任意实数xx,有

limnP{i=1nXinμnσx}=Φ(x) \lim\limits_{n\to\infty}P \left\{ \frac{\sum\limits_{i=1}^{n}X_{i}-n \mu}{\sqrt{n}\sigma}\leq x\right\}=\Phi(x)

 

定理表明当nn充分大时i=1nXi\sum\limits_{i=1}^{n}X_{i}的标准化i=1nXinμnσ\begin{aligned} \frac{\sum\limits_{i=1}^{n}X_{i}-n \mu}{\sqrt{n}\sigma}\end{aligned}近似服从标准正态分布N(0,1)N(0,1),或者说i=1nXi\sum\limits_{i=1}^{n}X_{i}近似的服从N(nμ,nσ2)N(n \mu,n \sigma^{2})

 

棣莫弗-拉普拉斯中心极限定理:设随机变量XnB(n,p)(n=1,2,)X_{n}\sim B(n,p)(n=1,2,\cdots ),则对于任意实数xx,有

limnP{Xnnpnp(1p)x}=Φ(x) \lim\limits_{n\to\infty}P \left\{\frac{X_{n}-np}{\sqrt{np(1-p)}}\leq x\right\}=\Phi (x)

其中Φ(x)\Phi (x)是标准正态的分布函数

 

定理表明当nn充分大时,服从B(n,p)B(n,p)的随机变量XnX_{n}经标准化后得Xnnpnp(1p)\begin{aligned} \frac{X_{n}-np}{\sqrt{np(1-p)}}\end{aligned}近似服从标准正态分布N(0,1)N(0,1),或者说XnX_{n}近似的服从N(np,np(1p))N(np,np(1-p))

 

例4:设X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots为独立同分布的随机变量列,且均服从参数为11的指数分布,则limnP{i=1nXin}=()\lim\limits_{n\to\infty}P \left\{\sum\limits_{i=1}^{n}X_{i}\leq n\right\}=()

 

X1,X2,,Xn,X_{1},X_{2},\cdots ,X_{n},\cdots独立同分布,且E(Xi)=1,D(Xi)=1E(X_{i})=1,D(X_{i})=1,根据列维-林德伯格中心极限定理,i=1nXi\sum\limits_{i=1}^{n}X_{i}近似的服从N(n1λ,n1λ2)\begin{aligned} N(n \cdot \frac{1}{\lambda},n \cdot \frac{1}{\lambda^{2}})\end{aligned}N(n,n)N(n,n),所以limnP{Xnnpnp(1p)x}=Φ(x)\begin{aligned} \lim\limits_{n\to\infty}P \left\{\frac{X_{n}-np}{\sqrt{np(1-p)}}\leq x\right\}=\Phi (x)\end{aligned},因此

limnP{i=1nXin}=limnP{i=1nXinn0}=Φ(0)=12 \lim\limits_{n\to\infty}P \left\{\sum\limits_{i=1}^{n}X_{i}\leq n\right\}=\lim\limits_{n\to\infty}P \left\{\frac{\sum\limits_{i=1}^{n}X_{i}-n}{\sqrt{n}}\leq 0\right\}=\Phi (0)=\frac{1}{2}