本文已参与「新人创作礼」活动,一起开启掘金创作之路。
B树,英文中的B-Tree,一个 m 阶的B树满足以下条件:
每个结点至多拥有m棵子树;
根结点至少拥有两颗子树(存在子树的情况下);
除了根结点以外,其余每个分支结点至少拥有 m/2 棵子树;
所有的叶结点都在同一层上;
有 k 棵子树的分支结点则存在 k-1 个关键码,关键码按照递增次序进行排列;
关键字数量需要满足ceil(m/2)-1 <= n <= m-1;
下面为一个m=4的示例:
操作 既然是树,那么必不可少的操作就是插入和删除,这也是B树和其它数据结构不同的地方,当然了,还有必不可少的搜索。 假定对高度为h的m阶B树进行操作。
插入
- 新结点一般插在第h层,通过搜索找到对应的结点进行插入,那么根据即将插入的结点的数量又分为下面几种情况。\
- 如果该结点的关键字个数没有到达m-1个,那么直接插入即可;\
- 如果该结点的关键字个数已经到达了m-1个,那么根据B树的性质显然无法满足,需要将其进行分裂。分裂的规则是该结点分成两半,将中间的关键字进行提升,加入到父亲结点中,但是这又可能存在父亲结点也满员的情况,则不得不向上进行回溯,甚至是要对根结点进行分裂,那么整棵树都加了一层。
删除
同样的,我们需要先通过搜索找到相应的值,存在则进行删除,需要考虑删除以后的情况,
- 如果该结点拥有关键字数量仍然满足B树性质,则不做任何处理;\
- 如果该结点在删除关键字以后不满足B树的性质(关键字没有到达ceil(m/2)-1的数量),则需要向兄弟结点借关键字,这有分为兄弟结点的关键字数量是否足够的情况。\
- 如果兄弟结点的关键字足够借给该结点,则过程为将父亲结点的关键字下移,兄弟结点的关键字上移\;
- 如果兄弟结点的关键字在借出去以后也无法满足情况,即之前兄弟结点的关键字的数量为ceil(m/2)-1,借的一方的关键字数量为ceil(m/2)-2的情况,那么我们可以将该结点合并到兄弟结点中,合并之后的子结点数量少了一个,则需要将父亲结点的关键字下放,如果父亲结点不满足性质,则向上回溯;
删除38所示