【概率论基础进阶】多维随机变量及其分布-两个随机变量函数Z=g(X,Y)的分布

266 阅读1分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

X,YX,Y均为离散型随机变量

与一维离散型类似(画表,加和)

 

X,YX,Y均为连续型随机变量

可用公式

FZ(z)=P{Zz}=P{g(X,Y)z}=g(x,y)zf(x,y)dxdy F_{Z}(z)=P \left\{Z \leq z\right\}=P \left\{g(X,Y) \leq z\right\}=\iint\limits_{g(x,y)\leq z}f(x,y)dxdy

 

例1:Z=X+YZ=X+Y的分布

(X,Y)(X,Y)的概率密度为f(x,y)f(x,y),则Z=X+YZ=X+Y的分布函数

FZ(z)=P{X+Yz}=x+yzf(x,y)dxdy=+dxzxf(x,y)dy+dyzyf(x,y)dx \begin{aligned} F_{Z}(z)&=P \left\{X+Y \leq z\right\}\\ &=\iint\limits_{x+y \leq z}f(x,y)dxdy\\ &=\int_{-\infty}^{+\infty}dx \int_{-\infty}^{z-x}f(x,y)dy \quad 或\quad \int_{-\infty}^{+\infty}dy \int_{-\infty}^{z-y}f(x,y)dx \end{aligned}

由此可以得到Z=X+YZ=X+Y的概率密度为

fZ(z)=+f(x,zx)dx=+f(zy,y)dy f_{Z}(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx=\int_{-\infty}^{+\infty}f(z-y,y)dy

 

这里说实话我不知道为啥(FZ(z))=fZ(z)(F_{Z}(z))'=f_{Z}(z),后续尽量补上

 

特别是当XXYY相互独立时,f(x,y)=fX(x)fY(y)f(x,y)=f_{X}(x)\cdot f_{Y}(y),则

fZ(z)=+fX(x)fY(zx)dx=+fX(zy)fY(y)dy f_{Z}(z)=\int_{-\infty}^{+\infty}f_{X}(x)f_{Y}(z-x)dx=\int_{-\infty}^{+\infty}f_{X}(z-y)f_{Y}(y)dy

这个公式称为卷积公式,记为

fZ=fXfY f_{Z}=f_{X}*f_{Y}

 

XX为离散型随机变量,YY为连续型随机变量

一般对离散型随机变量XX的各种可能用全概率公式把它们展开

 

YY为连续型,Z=g(X,Y)Z=g(X,Y),则

FZ(z)=P{Zz}=P{g(X,Y)z}=iP{X=xi}P{g(X,Y)zX=xi}P(xi)=pi=ipiP{g(X,Y)zX=xi} \begin{aligned} F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=P\left\{g(X,Y)\leq z\right\}\\ &=\sum\limits_{i}^{}P \left\{X= x_{i}\right\}P \left\{g(X,Y) \leq z|X=x_{i}\right\}\\ &即P(x_{i})=p_{i}\\ &=\sum\limits_{i}^{}p_{i}P \left\{g(X,Y) \leq z|X=x_{i}\right\} \end{aligned}

 

Z=max{X,Y}Z=\max \left\{X,Y\right\}的分布

max{X,Y}\max \left\{X,Y\right\}不大于zz等价于XXYY都不大于zz,即

FZ(z)=P{Zz}=P{Xz,Yz}=P{Xz}P{Yz}=FX(z)FY(z) \begin{aligned} F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=P \left\{X \leq z,Y \leq z\right\}\\ &=P \left\{X \leq z\right\}P \left\{Y \leq z\right\}\\ &=F_{X}(z)F_{Y}(z) \end{aligned}

 

Z=min{X,Y}Z=\min \left\{X,Y\right\}的分布

FZ(z)=P{Zz}=1P{Z>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}=1(1FX(z))(1FY(z))=FX(z)+FY(z)FX(z)FY(z)也可FZ(z)=P{Zz}=P{min{X,Y}z}=P{XzYz}=P{Xz}+P{Yz}P{Xz,Yz}=1(1FX(z))(1FY(z))=FX(z)+FY(z)FX(z)FY(z) \begin{aligned} F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=1-P \left\{Z >z\right\}\\ &=1-P \left\{X>z,Y>z\right\}\\ &=1-P \left\{X>z\right\}P \left\{Y>z\right\}\\ &=1-(1-F_{X}(z))(1-F_{Y}(z))\\ &=F_{X}(z)+F_{Y}(z)-F_{X}(z)F_{Y}(z)\\ &也可\\ F_{Z}(z)&=P \left\{Z \leq z\right\}\\ &=P \left\{\min \left\{X,Y\right\}\leq z\right\}\\ &=P \left\{X \leq z \cup Y \leq z\right\}\\ &=P \left\{X \leq z\right\}+P \left\{Y \leq z\right\}-P \left\{X \leq z,Y \leq z\right\}\\ &=1-(1-F_{X}(z))(1-F_{Y}(z))\\ &=F_{X}(z)+F_{Y}(z)-F_{X}(z)F_{Y}(z) \end{aligned}

 

以上结果可以推广至nn个相互独立的随机变量

 

例2:设随机变量XXYY相互独立,XE(λ1),YE(λ2),λ1,λ2>0X \sim E(\lambda_{1}),Y \sim E(\lambda_{2}),\lambda_{1},\lambda_{2}>0,令Z=min{X,Y}Z=\min \left\{X,Y\right\},求ZZ的概率密度函数fZ(z)f_{Z}(z)

 

由公式

FZ(x)=FX(z)+FY(z)FX(z)FY(z) F_{Z}(x)=F_{X}(z)+F_{Y}(z)-F_{X}(z)F_{Y}(z)

z>0z>0

fZ(z)=FZ(x)=fX(z)+fY(z)fX(z)FY(z)FX(z)fY(z)=(λ1+λ2)e(λ1+λ2)z \begin{aligned} f_{Z}(z)=F'_{Z}(x)&=f_{X}(z)+f_{Y}(z)-f_{X}(z)F_{Y}(z)-F_{X}(z)f_{Y}(z)\\ &=(\lambda_{1}+\lambda_{2})e^{-(\lambda_{1}+\lambda_{2})z} \end{aligned}

z0z \leq 0

fZ(z)=0 f_{Z}(z)=0

ZE(λ1+λ2) Z \sim E(\lambda_{1}+\lambda_{2})

 

也可用

FZ(z)=1{P{X>z}P{Y>z}}={1eλ1xeλ2x=1e(λ1+λ2)xz>00z0fZ(z)=FZ(z)={(λ1+λ2)e(λ1+λ2)xz>00z0 \begin{aligned} F_{Z}(z)&=1- \left\{P \left\{X >z\right\}P \left\{Y>z\right\}\right\}\\ &=\left\{\begin{aligned}&1-e^{\lambda_{1}x}e^{-\lambda_{2}x}=1-e^{-(\lambda_{1}+\lambda_{2})x}&z>0\\&0&z \leq 0\end{aligned}\right.\\ f_{Z}(z)&=F'_{Z}(z)=\left\{\begin{aligned}&(\lambda_{1}+\lambda_{2})e^{-(\lambda_{1}+\lambda_{2})x}&z>0\\&0&z \leq 0\end{aligned}\right. \end{aligned}

ZE(λ1+λ2) Z \sim E(\lambda_{1}+\lambda_{2})

 

例3:设二维随机变量(X,Y)(X,Y)的概率密度为

f(x,y)={2xy0<x<1,0<y<10其他 f(x,y)=\left\{\begin{aligned}&2-x-y&0<x<1,0<y<1\\&0&其他\end{aligned}\right.
  • P{X>2Y}P \left\{X>2Y\right\}

  • Z=X+YZ=X+Y的概率密度fZ(z)f_{Z}(z)

 

P{X>2Y}=x>2yf(x,y)dxddy=D(2xy)dxdy=01dx012x(2xy)dy=724 \begin{aligned} P \left\{X>2Y \right\}&=\iint\limits_{x>2y}f(x,y)dxddy\\ &=\iint\limits_{D}(2-x-y)dxdy\\ &=\int_{0}^{1}dx \int_{0}^{\frac{1}{2}x}(2-x-y)dy\\ &=\frac{7}{24} \end{aligned}

fZ(z)=+f(x,zx)dx f_{Z}(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx

先考虑被积函数f(x,zx)f(x,z-x)中第一个自变量xx的变化范围,只有当0<x<10<x<1时,f(x,zx)f(x,z-x)才不等于00,因此被积函数上下限最大范围为(0,1)(0,1)

再考虑被积函数f(x,zx)f(x,z-x)中第二个自变量zxz-x的变化范围,只有当0<zx<10<z-x<1时,f(x,zx)f(x,z-x)不为00,因此需要对zz分区间讨论

z0z \leq 0时,由于0<x<10<x<1,故zx<0z-x<0,所以

fZ(z)=0 f_{Z}(z)=0

0<z10<z \leq 1时,

fZ(z)=0z(2z)dx=2zz2 f_{Z}(z)=\int_{0}^{z}(2-z)dx=2z-z^{2}

1<z21<z \leq 2

fZ(z)=z11(2z)dx=44z+z2 f_{Z}(z)=\int_{z-1}^{1}(2-z)dx=4-4z+z^{2}

2<z2<z时,由于0<x<10<x<1,故zx>0z-x>0,所以

fZ(z)=0 f_{Z}(z)=0

因此

fZ(z)={2zz20<z144z+z21<z20其他 f_{Z}(z)=\left\{\begin{aligned}&2z-z^{2}&0<z \leq 1\\&4-4z+z^{2}&1<z \leq 2\\&0&其他\end{aligned}\right.

 

这里直接用最基本的方法比卷积公式简单

 

![[附件/Pasted image 20220915221320.png|300]]

 

FZ(z)=P{Zz}=P{X+Yz}=x+yzf(x,y)dxdy F_{Z}(z)=P \left\{Z \leq z\right\}=P \left\{X+Y \leq z\right\}=\iint\limits_{x+y \leq z}f(x,y)dxdy

z0z \leq 0时,

FZ(z)=0 F_{Z}(z)=0

0<z10<z \leq 1时,

FZ(z)=D1f(x,y)dxdy=0xdx0zx(2xy)dy=z213z3 \begin{aligned} F_{Z}(z)&=\iint\limits_{D_{1}}f(x,y)dxdy\\ &=\int_{0}^{x}dx \int_{0}^{z-x}(2-x-y)dy\\ &=z^{2}- \frac{1}{3}z^{3} \end{aligned}

1<z21<z \leq 2

FZ(z)=1x+y>zf(x,y)dxdy=1D2f(x,y)dxdy=1z11dxzx1(2xy)dy=13z32z2+4z53 \begin{aligned} F_{Z}(z)&=1- \iint\limits_{x+y>z}f(x,y)dxdy\\ &=1-\iint\limits_{D_{2}}f(x,y)dxdy\\ &=1- \int_{z-1}^{1}dx \int_{z-x}^{1}(2-x-y)dy\\ &=\frac{1}{3}z^{3}-2z^{2}+4z- \frac{5}{3} \end{aligned}

2<z2<z时,

FZ(z)=1 F_{Z}(z)=1

所以

fZ(z)=FZ(z)={2zz20<z144z+z21<z20其他 f_{Z}(z)=F'_{Z}(z)=\left\{\begin{aligned}&2z-z^{2}&0<z \leq 1\\&4-4z+z^{2}&1<z \leq 2\\&0&其他\end{aligned}\right.

 

例4:设二维随机变量(X,Y)(X,Y)服从正态分布N(1,0;1,1;0)N(1,0;1,1;0),则P{XYY<0}=()P \left\{XY-Y<0\right\}=()

 

由于ρ=0\rho=0,因此XXYY相互独立,且XN(1,1),YN(0,1)X \sim N(1,1),Y \sim N(0,1),也就有(X1)N(0,1)(X-1) \sim N(0,1)YY相互独立

根据正态分布密度的对称性,有

P{X1<0}=P{X1>0}=P{Y<0}=P{Y>0}=12 P \left\{X-1<0\right\}=P \left\{X-1>0\right\}=P \left\{Y<0\right\}=P \left\{Y>0\right\}=\frac{1}{2}

因此

P{XYY<0}=P{(X1)Y<0}=P{X1<0,Y>0}+P{X1>0,Y<0}=P{X1<0}P{Y>0}+P{X1>0}P{Y<0}=12 \begin{aligned} P \left\{XY-Y<0\right\}&=P \left\{(X-1)Y<0\right\}\\ &=P \left\{X-1<0,Y>0\right\}+P \left\{X-1>0,Y<0\right\}\\ &=P \left\{X-1<0\right\}P \left\{Y>0\right\}+P \left\{X-1>0\right\}P \left\{Y<0\right\}\\ &=\frac{1}{2} \end{aligned}