【概率论基础进阶】多维随机变量及其分布-二维均匀分布和二维正态分布

362 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

二维均匀分布

定义:如果二维连续型随机变量(X,Y)(X,Y)的概率密度为

f(x,y)={1A(x,y)G0其他 f(x,y)=\left\{\begin{aligned}& \frac{1}{A}&(x,y) \in G\\&0&其他\end{aligned}\right.

其中AA是平面有界区域GG的面积,则称(X,Y)(X,Y)服从区域GG上的均匀分布

 

(X,Y)(X,Y)GG上服从均匀分布,DDGG中的一个部分区域,记它们的面积分别为SDS_{D}SGS_{G},则P{(X,Y)D}=SDSG\begin{aligned} P \left\{(X,Y)\in D\right\}=\frac{S_{D}}{S_{G}}\end{aligned}

 

例1:设二维连续型随机变量(X,Y)(X,Y)在区域DD上服从均匀分布,其中

D={(x,y)x2+y21} D=\left\{(x,y)|x^{2}+y^{2} \leq 1\right\}

  • XX的边缘密度fX(x)f_{X}(x)

  • 条件概率密度fYX(yx)f_{Y|X}(y|x)

 

区域DD是半径为11的单位圆,其面积应为π\pi,因此(X,Y)(X,Y)的联合密度

f(x,y)={1πx2+y210其他 f(x,y)=\left\{\begin{aligned}& \frac{1}{\pi}&x^{2}+y^{2}\leq 1\\&0&其他\end{aligned}\right.

fX(x)=+f(x,y)dy={1x21x21π=2π1x21x10其他 f_{X}(x)=\int_{-\infty}^{+\infty}f(x,y)dy=\left\{\begin{aligned}&\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi}=\frac{2}{\pi}\sqrt{1-x^{2}}&-1\leq x \leq 1\\&0&其他\end{aligned}\right.

 

注意这里1x1-1\leq x \leq 1的范围是根据x2+y21x^{2}+y^{2}\leq 1得到的,因此必须有等号

 

1<x<1-1<x<1

fYX(yx)={121x21x2y1x20其他 f_{Y|X}(y|x)=\left\{\begin{aligned}& \frac{1}{2\sqrt{1-x^{2}}}&-\sqrt{1-x^{2}}\leq y \leq 1-x^{2}\\&0&其他\end{aligned}\right.

 

而这里1<x<1-1<x<1,是由于条件概率的分母边缘概率,即fX(x)>0f_{X}(x)>0,得到的,因此必须没有等号,有等号的时候可以代入边缘概率fX(1)=fX(1)=0f_{X}(1)=f_{X}(-1)=0

 

二维正态分布

定义:如果二维连续型随机变量(X,Y)(X,Y)的概率密度为

f(x,y)=12πσ1σ21ρ2exp(12(1ρ2)[(xμ1)2σ122ρ(xμ1)(yμ2)σ1σ2+(yμ2)2σ22])<x<+,<y<+ \begin{aligned} f(x,y)&= \frac{1}{2\pi \sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}\exp\left(- \frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right] \right)\\ &-\infty<x<+\infty,-\infty<y<+\infty \end{aligned}

其中μ1,μ2,σ1>0,σ2>0,1<ρ<1\mu_{1},\mu_{2},\sigma_{1}>0,\sigma_{2}>0,-1<\rho<1,均为常数,exp(x)\exp(x)表示exe^{x},则称(X,Y)(X,Y)服从参数为μ1,μ2,σ1,σ2,ρ\mu_{1},\mu_{2},\sigma_{1},\sigma_{2},\rho的二维正态分布,记作(X,Y)N(μ1;μ2;σ1;σ2;ρ)(X,Y)\sim N(\mu_{1};\mu_{2};\sigma_{1};\sigma_{2};\rho)

 

性质

(X,Y)N(μ1;μ2;σ12;σ22;ρ)(X,Y)\sim N(\mu_{1};\mu_{2};\sigma_{1}^{2};\sigma_{2}^{2};\rho),则

  • XN(μ1,σ12),YN(μ2,σ22)X \sim N(\mu_{1},\sigma_{1}^{2}),Y \sim N(\mu_{2},\sigma_{2}^{2})

  • XXYY相互独立的充分必要条件是ρ=0\rho=0

 

如果(X,Y)(X,Y)二维正态分布可保证XXYY均正态,反之则不能成立,即已知XXYY均正态,并不能保证(X,Y)(X,Y)正态

 

  • aX+bYN(aμ1+bμ2,a2σ12+2abσ1σ2ρ+b2σ22)aX+bY \sim N(a \mu_{1}+b \mu_{2},a^{2}\sigma^{2}_{1}+2ab \sigma_{1}\sigma_{2}\rho+b^{2}\sigma_{2}^{2})

  • abcd0\begin{vmatrix}a & b \\ c & d\end{vmatrix}\ne 0时,(aX+bY,cX+dY)(aX+bY,cX+dY)也一定为二维正态

 

在今后的数理统计中,常有

随机变量X1,X2,,XnX_{1},X_{2},\cdots ,X_{n}相互独立,且XiN(μ,σ2)(i=1,2,,n)X_{i} \sim N(\mu,\sigma^{2})(i=1,2,\cdots ,n),则有

i=1nciXiN(i=1nciμ,j=1ncj2σ2)\sum\limits_{i=1}^{n}c_{i}X_{i}\sim N(\sum\limits_{i=1}^{n}c_{i}\mu,\sum\limits_{j=1}^{n}c_{j}^{2}\sigma^{2})

随机变量X1,X2,,XnX_{1},X_{2},\cdots ,X_{n}相互独立,且XiN(μi,σi2)(i=1,2,,n)X_{i} \sim N(\mu_{i},\sigma_{i}^{2})(i=1,2,\cdots ,n),则有

i=1nciXiN(i=1nciμi,j=1ncj2σj2)\sum\limits_{i=1}^{n}c_{i}X_{i}\sim N(\sum\limits_{i=1}^{n}c_{i}\mu_{i},\sum\limits_{j=1}^{n}c_{j}^{2}\sigma_{j}^{2})

 

例2:设二维随机变量(X,Y)(X,Y)的概率密度为

f(x,y)=1+sinxsiny2πe12(x2+y2),<x<+,<y<+ f(x,y)=\frac{1+\sin x \sin y}{2\pi}e^{- \frac{1}{2}(x^{2}+y^{2})},-\infty<x<+\infty,-\infty<y<+\infty

则关于XX的边缘概率密度fX(x)=()f_{X}(x)=()

 

fX(x)=+1+sinxsiny2πe12(x2+y2)dy=12πe12x2(+e12y2dy++sinxsinye12y2dy)=12πe12x2(+e12y2dy+0)注意ex2常用两种积分积不出来,这里单独讨论 \begin{aligned} f_{X}(x)&=\int_{-\infty}^{+\infty}\frac{1+\sin x \sin y}{2\pi}e^{- \frac{1}{2}(x^{2}+y^{2})}dy\\ &=\frac{1}{2\pi}e^{- \frac{1}{2}x^{2}} \left(\int_{-\infty}^{+\infty}e^{- \frac{1}{2}y^{2}}dy+\int_{-\infty}^{+\infty}\sin x \sin ye^{- \frac{1}{2}y^{2}}dy\right)\\ &=\frac{1}{2\pi}e^{- \frac{1}{2}x^{2}} \left(\int_{-\infty}^{+\infty}e^{- \frac{1}{2}y^{2}}dy+0\right)\\ &注意e^{x^{2}}常用两种积分积不出来,这里单独讨论 \end{aligned}

对于I=+e12y2dy\begin{aligned} I=\int_{-\infty}^{+\infty}e^{- \frac{1}{2}y^{2}}dy\end{aligned},有

I2=+e12y2dy+e12x2dxD={(x,y)xR,yR}=De12(x2+y2)dxdyD={(r,θ)0r<+,0θ2π}=02πdθ0+e12r2rdr=02πdθ0+e12r2d(12r2)=02πdθ(1)=2π \begin{aligned} I^{2}&=\int_{-\infty}^{+\infty}e^{- \frac{1}{2}y^{2}}dy \int_{-\infty}^{+\infty}e^{- \frac{1}{2}x^{2}}dx \quad D=\left\{(x,y)|x \in R,y \in R\right\}\\ &=\iint\limits_{D}e^{- \frac{1}{2}(x^{2}+y^{2})}dxdy \quad D=\left\{(r,\theta )|0\leq r<+\infty,0 \leq \theta \leq 2\pi\right\}\\ &=\int_{0}^{2\pi}d \theta \int_{0}^{+\infty}e^{- \frac{1}{2}r^{2}}rdr\\ &=-\int_{0}^{2\pi}d \theta \int_{0}^{+\infty}e^{- \frac{1}{2}r^{2}}d \left(-\frac{1}{2}r^{2}\right)\\ &=-\int_{0}^{2\pi}d \theta \cdot (-1)\\ &=2\pi \end{aligned}

因此有I=2π\begin{aligned} I=\sqrt{2\pi}\end{aligned},带回原式

fX(x)=12πex22 f_{X}(x)=\frac{1}{\sqrt{2\pi}}e^{\frac{-x^{2}}{2}}

 

对于本题,显然XN(0,1),YN(0,1)X \sim N(0,1),Y \sim N(0,1),即XXYY都服从标准正态,但(X,Y)(X,Y)不是二维正态分布

延伸两个公式

0+ex2dx=π2\begin{aligned} \int_{0}^{+\infty}e^{-x^{2}}dx=\frac{\sqrt{\pi}}{2}\end{aligned}

证明:

I2=0+ex2dx0+ey2dyD={(x,y)x0,y0}=De(x2+y2)dxdyD={(r,θ)0e<+,0θπ2}=0π2dθ0+rer2dr=π4I=π2\begin{aligned} I^{2}&=\int_{0}^{+\infty}e^{-x^{2}}dx \cdot \int_{0}^{+\infty}e^{-y^{2}dy}\quad D=\left\{(x,y)|x \geq 0,y \geq 0\right\}\\&=\iint\limits_{D}e^{-(x^{2}+y^{2})}dxdy \quad D=\left\{(r,\theta )|0 \leq e <+\infty,0 \leq \theta \leq \frac{\pi}{2}\right\}\\&=\int_{0}^{\frac{\pi}{2}}d \theta \int_{0}^{+\infty}r e^{-r^{2}}dr\\&=\frac{\pi}{4}\\I&=\frac{\sqrt{\pi}}{2}\end{aligned}

作者:熊骏、曾祥洲

链接:反常积分∫∞0ex2dx的几种计算方法 - 道客巴巴 (doc88.com)

上面算+e12y2dy\begin{aligned} \int_{-\infty}^{+\infty}e^{- \frac{1}{2}y^{2}}dy\end{aligned},也可以套该式

+e12y2dy=20+e(y2)2dy=220+e(y2)2d(y2)=22π2=2π\begin{aligned} \int_{-\infty}^{+\infty}e^{- \frac{1}{2}y^{2}}dy&=2\int_{0}^{+\infty}e^{- (\frac{y}{\sqrt{2}})^{2}}dy\\&=2\sqrt{2}\int_{0}^{+\infty}e^{- (\frac{y}{\sqrt{2}})^{2}}d\left(\frac{y}{\sqrt{2}}\right)\\&=2\sqrt{2}\cdot \frac{\sqrt{\pi}}{2}\\&=\sqrt{2\pi}\end{aligned}

还有一个公式

0+xnexdx=n!\int_{0}^{+\infty}x^{n}e^{-x}dx=n!

其实就是分布积分法,然后代入上下限就行

xnexdx=xnex+nxn1exdx=xnexnxn1ex+n(n1)xn2exdx将分部积分步骤重复n=xnexnxn1exn(n1)(n2)exn(n1)(n2)2xex+n!exdx=xnexnxn1exn(n1)(n2)exn(n1)(n2)2xexn!ex+Cf(x)=xn=ex[f(x)+f(x)++f(n)(x)]+C\begin{aligned} \int_{}^{}x^{n}e^{-x}dx&=-x^{n}e^{-x}+n \int_{}^{}x^{n-1}e^{-x}dx\\&=-x^{n}e^{-x}-nx^{n-1}e^{-x}+n(n-1)\int_{}^{}x^{n-2}e^{-x}dx\\&将分部积分步骤重复n次\\&=-x^{n}e^{-x}-nx^{n-1}e^{-x}-n(n-1)(n-2)e^{-x}-\cdots -n(n-1)(n-2)\cdots 2xe^{-x}+n!\int_{}^{}e^{-x}dx\\&=-x^{n}e^{-x}-nx^{n-1}e^{-x}-n(n-1)(n-2)e^{-x}-\cdots -n(n-1)(n-2)\cdots 2xe^{-x}-n!e^{-x}+C\\&设f(x)=x^{n}\\&=-e^{-x}[f(x)+f'(x)+\cdots +f^{(n)}(x)]+C\end{aligned}

代入上下限

0+xnexdx=limu+xnexdx=limu+[ex(xn+nxn1+n(n1)xn2++n!x+n!)]0u=limu+eu(un+nun1+n(n1)un2++n!u+n!)+n!\begin{aligned} \int_{0}^{+\infty}x^{n}e^{-x}dx&=\lim\limits_{u \to +\infty}x^{n}e^{-x}dx\\&=\lim\limits_{u \to +\infty}[-e^{-x}(x^{n}+nx^{n-1}+n(n-1)x^{n-2}+\cdots +n!x+n!)]\Big|_{0}^{u}\\&=\lim\limits_{u \to +\infty}-e^{-u}(u^{n}+nu^{n-1}+n(n-1)u^{n-2}+\cdots +n!u+n!)+n!\end{aligned}

由于nNlimx+xnex=0\forall n \in N \lim\limits_{x \to +\infty}x^{n}e^{-x}=0,故

0+xnexdx=n!\int_{0}^{+\infty}x^{n}e^{-x}dx=n!

作者:乌里扬诺夫丶

链接:x^(n)e^(-x)和x^(n)e^(x)型积分公式 - 知乎 (zhihu.com)