图像分类:GoggLeNet网络、五分类 flower 数据集、pytorch

268 阅读7分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

一、GoggLeNet 网络的特点

GoogLeNet是2014年提出的一种全新的深度学习结构,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。GoogLeNet通过引入inception从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果。

网络亮点:

(1)引入inception结构。

inception中包含了1x1,3x3,5x5等不同大小的卷积核,从而将不同尺度的特征信息融合到一起。

inception通过并联多个卷积层,增加了网络层的宽度,打破了以往通过增加网络层深度来提升网络性能的思路。

(2)inception中引入1x1卷积层用于降低channel,从而降低模型参数。

(3)丢弃了全连接层,引入平均池化层,大大减少了模型参数。

(4)引入两个辅助分类器帮助训练。

研究发现神经网络的中间层也具有很强的识别能力,因此在某些中间层中添加分类器,输出预测结果,就这是辅助分类器。

使用辅助分类器可以增加低层网络的分类能力,防止梯度消失,增加正则化。

GoggLeNet网络共有三个输出,一个是最终输出(权重为0.4),还有两个辅助分类器的输出(权重均为0.3)

二、代码结构

注:dataset.py,train.py,predict.py的大部分内容与 图像分类:AlexNet网络、五分类 flower 数据集、pytorch 的代码一致,详细的代码注释可以看AlexNet这篇博客。

在这里插入图片描述

三、dataset.py

import os
import json
import torch
from torchvision import transforms, datasets


def dataset(batch_size):
    train_path = "flower_data/train"
    val_path = "flower_data/val"
    assert os.path.exists(train_path), "{} path does not exist.".format(train_path)

    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),   # cannot 224, must (224, 224)
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    train_dataset = datasets.ImageFolder(root=train_path,transform=data_transform["train"])
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
                                               shuffle=True, num_workers=nw)
    validate_dataset = datasets.ImageFolder(root=val_path, transform=data_transform["val"])
    valid_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=batch_size,
                                               shuffle=True, num_workers=nw)
    train_num = len(train_dataset)
    val_num = len(validate_dataset)
    print(f"using {train_num} images for training, {val_num} images for valid.")

    flower_class_id = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_class_id.items())
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    return train_loader,valid_loader,val_num

四、model.py

import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        # aux_logits表示是否使用辅助分类器,只有在训练中使用aux,在测试中不使用。

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        # 如果通过MaxPool2d得到的size是小数,设置ceil_mode=True则向上取整,默认值为ceil_mode=False表示向下取整。

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        """
        自适应平均池化,输出大小为1x1
        采用nn.AdaptiveAvgPool2d的好处是无论输入多大尺寸的图像,都可以得到1x1的输出
        而nn.AvgPool2d只能对特定输入尺寸的图像进行操作
        """

        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)

        """
        训练过程中输出x和两个辅助分类器,即三个输出。
        验证和测试过程中只输出x,辅助分类器不起作用。
        """

        if self.training and self.aux_logits:
            return x, aux1, aux2
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()
        """
        Inception结构有四个分支(branch),从左到右依次是branch1、branch2、branch3、branch4
        参数说明:
        ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj 表示对对应操作的卷积核个数(即通道数)
        ch1x1:branch1的1x1卷积的channel
        ch3x3red:branch2的1x1卷积的channel,因为1x1卷积的目的是用小channel减少参数数量,所以叫做red(reduce)
        ch3x3:branch2的3x3卷积的channel
        ch5x5red:branch3的1x1卷积的channel
        ch5x5:branch3的5x5卷积的channel
        pool_proj:branch4的1x1卷积的channel,branch4中第一层的MaxPool不改变channel,所以不需要设置MaxPool的channel
        """

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
            # padding=1是为了保证输入和输出的H、W相等,因为四个branch合并时要保证H和W相等
        )
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
            # padding=1是为了保证输入和输出的H、W相等
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)
        # 在第一维(channel)对outputs进行合并,outputs的通道排列为 [N,C,H,W]


# 辅助分类器
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1是辅助分类器一,aux2是辅助分类器二
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        """
        这里用的是F.dropout,而不是nn.dropout,其实二者功能是一样的,只是参数写法不同。
        self.training是随着运行过程变化的:
        在model.train()中,self.training=True,启用dropout
        在model.eval()中,self.training=False,屏蔽dropout
        注意参数self.training不需要自己定义,是nn.Module自带的参数。
        """

        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x


# 将Conv2d和ReLU结合到一起
# 因为每次做完Conv2d都有跟一个ReLU,所以为了方便可以把二者合在一起
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

五、train.py

import sys
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm

from model import GoogLeNet
from dataset import dataset


def train():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    epochs = 5
    batch_size = 32
    train_loader, valid_loader, val_num=dataset(batch_size)

    model = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)
    model.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.0003)

    best_acc = 0.0
    save_path = './GoogleNet.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        model.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits, aux_logits2, aux_logits1 = model(images.to(device))
            loss0 = loss_function(logits, labels.to(device))
            loss1 = loss_function(aux_logits1, labels.to(device))
            loss2 = loss_function(aux_logits2, labels.to(device))

            # 训练时使用两个辅助分类器,三个输入loss的权重分别为0.4,0.3,0.3
            loss = loss0 + loss1 * 0.3 + loss2 * 0.3
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()
            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss)

        # validate
        model.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(valid_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data

                # 测试时不使用辅助分类器,只有一个输出
                outputs = model(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(model.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    train()

训练结果(cpu训练速度太慢没有跑完):

在这里插入图片描述

六、predict.py

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import GoogLeNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "flower_data/tulip.png"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    img = data_transform(img)

    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)    # [N, C, H, W]

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = GoogLeNet(num_classes=5, aux_logits=False).to(device)

    # load model weights
    weights_path = "./GoogleNet.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    # missing_keys, unexpected_keys =
    model.load_state_dict(torch.load(weights_path, map_location=device),
                                                          strict=False)

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

测试结果:

class: daisy        prob: 0.000195
class: dandelion    prob: 8.31e-06
class: roses        prob: 0.213
class: sunflowers   prob: 9.43e-05
class: tulips       prob: 0.787

测试图片及类别预测:

在这里插入图片描述