本文已参与「新人创作礼」活动,一起开启掘金创作之路。
一、古典概型
定义:当试验结果为有限n个样本点,且每个样本点的发生具有相等的可能性,如果事件A由nA个样本点组成,则事件A的概率
P(A)=nnA=样本点总数A所包含的样本点数
称有限等可能试验中事件A的概率P(A)为古典型概率
例1:已知6个产品中混有2个次品,现每次一个的逐个随机抽取检验,求
-
恰好查三次就确定2次品的概率
-
不超过三次就确定2次品的概率
恰好查三次就确定2次品的概率,可以用全排列的方式
A66C21两个次品挑一个C21前两个位置挑一个A44=152
也可以从位置的角度考虑,六个位置任选两个放次品,前两个选一个位置放次品,第三个位置放一个次品
C62C21=152
不超过三次就确定2次品的概率,可以用全排列的方式
A66C32A22A44=51
也可以从位置的角度考虑,挑两个位置给次品,次品必须在前三个位置中的两个
C62C32=51
一定要保持分子分母考虑对象相同,例如本题分母对所有物品排序,分子就是对所有物品符合条件的排序,或者另一种从位置的角度,分母对两个位置考虑,分子就是对符合条件的两个位置考虑
二、几何概型
定义:当试验的样本空间是某区域(该区域可以是一维、二维或三维等等),以L(Ω)表示其几何度量(长度、面积、体积等等)。L(Ω)为有限,且试验结果出现在Ω中任何区域可能性只与该区域几何度量成正比。事件A的样本点所表示的区域为ΩA,则事件A的概率
P(A)=L(Ω)L(ΩA)=Ω的几何度量ΩA的几何度量
称这样样本点个数无限但几何度量上的等可能试验中事件A的概率P(A)为几何型概率
三、伯努利概型
定义:把一随机试验独立重复做若干次,即各次试验所联系的事件之间相互独立,且同一事件在各个试验中出现的概率相同,称为独立重复试验
定义:如果每次试验只有两个结果A和Aˉ,则称这种试验为伯努利试验,将伯努利试验独立重复进行n次,称为n重伯努利试验
设在每次试验中,概率P(A)=p(0<p<1),则在n重伯努利试验中事件A发生k次的概率,又称为二项概率公式
Cnkpk(1−p)n−k,k=0,1,2,⋯,n
例2:某人打靶的命中率为21,当他连射三次后检查目标,发现靶已命中,则他在第一次射击时就已命中的概率为()
本题可以理解为条件概率,即在射击命中的条件下是第一次命中的概率为()
设A为至少命中一次,B为第一次命中,显然B⊂A。所求概率为
P(B∣A)=P(A)P(AB)=1−P(Aˉ)P(B)=1−(21)321=74