【线性代数基础进阶】线性方程组

69 阅读4分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

Ax=0Ax=0

{a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0\begin{cases}a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=0\\a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=0\\\cdots\\a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=0\end{cases}x1=0,x2=0,,xn=0x_{1}=0,x_{2}=0,\cdots,x_{n}=0必定是Ax=0Ax=0的解,称为零解

 

定理:Am×nx=0A_{m\times n}x=0有非零解

r(A)<n\Leftrightarrow r(A)<n

A\Leftrightarrow A的列向量组线性相关

 

推论:

  1. m<nm<n时,Ax=0Ax=0必有非零解

  2. m=nm=n时,Ax=0Ax=0有非零解A=0\Leftrightarrow |A|=0

 

定理:若Ax=0Ax=0系数矩阵的秩r(A)=r<nr(A)=r<n,则Ax=0Ax=0nrn-r个线性无关的解,且Ax=0Ax=0的任一一个阶都可由着nrn-r个线性无关的解线性表出

 

如果η1,η2\eta_{1},\eta_{2}Ax=0Ax=0的解

Aη1=0,Aη2=0 A \eta_{1}=0,A \eta_{2}=0

那么

A(k1η1+k2η2)=k1Aη1+k2Aη2=0 A(k_{1}\eta_{1}+k_{2}\eta_{2})=k_{1}A \eta_{1}+k_{2}A \eta_{2}=0

k1η1+k2η2k_{1}\eta_{1}+k_{2}\eta_{2}Ax=0Ax=0的解

定理:若η1,η2,,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}Ax=0Ax=0的基础解系,则齐次方程组Ax=0Ax=0的通解为:

k1η1+k2η2++ktηt k_{1}\eta_{1}+k_{2}\eta_{2}+\cdots+k_{t}\eta_{t}

k1,k2,,ktk_{1},k_{2},\cdots,k_{t}是任意常数

 

定义:Ax=0Ax=0的基础解系是指,如果η1,η2,,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}Ax=0Ax=0的解,且满足

  • η1,η2,,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}线性无关

  • Ax=0Ax=0的任一解都可由η1,η2,,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}线性表出

 

则称η1,η2,,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}Ax=0Ax=0的一个基础解系

 

例:{5x1+7x2+2x3=03x1+5x2+6x34x4=04x1+5x22x3+3x4\begin{cases}5x_{1}+7x_{2}+2x_{3}=0\\ 3x_{1}+5x_{2}+6x_{3}-4x_{4}=0\\ 4x_{1}+5x_{2}-2x_{3}+3x_{4}\end{cases}求基础解系,通解

 

对系数矩阵作初等行变换

A=(572035644523)(108701650000) A=\begin{pmatrix} 5 & 7 & 2 & 0 \\ 3 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -8 & 7 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{pmatrix}

nr(A)=42=2n-r(A)=4-2=2

同解方程组

{x18x3+7x4=0x2+6x35x4=0 \begin{cases} x_{1}-8x_{3}+7x_{4}=0 \\ x_{2}+6x_{3}-5x_{4}=0 \end{cases}

 

可以用0,10,1

 

{x1=8x37x4x2=6x3+5x4 \begin{cases} x_{1}=8x_{3}-7x_{4} \\ x_{2}=-6x_{3}+5x_{4} \end{cases}

x3=1,x4=0x2=6,x1=8x_{3}=1,x_{4}=0\Rightarrow x_{2}=-6,x_{1}=8

x3=0,x4=1x2=5,x1=7x_{3}=0,x_{4}=1\Rightarrow x_{2}=5,x_{1}=-7

基础解系为

η1=(8,6,1,0)T,η2=(7,5,0,1)T \eta_{1}=(8,-6,1,0)^{T},\eta_{2}=(-7,5,0,1)^{T}

通解

k1η1+k2η2,k1,k2为任意常数 k_{1}\eta_{1}+k_{2}\eta_{2},k_{1},k_{2}为任意常数

 

也可以用提参数的方法

 

x3=t,x4=ux_{3}=t,x_{4}=u,即

{x1=8t7ux2=6t+5ux3=tx4=uu,v为任意常数 \begin{cases} x_{1}=8t-7u \\ x_{2}=-6t+5u \\ x_{3}=t \\ x_{4}=u \end{cases}\quad u,v为任意常数

因此

x=t(8610)+u(7501) x=t \begin{pmatrix} 8 \\ -6 \\ 1 \\ 0 \end{pmatrix}+u \begin{pmatrix} -7 \\ 5 \\ 0 \\ 1 \end{pmatrix}

 

例:α1=(1,0,2)T,α2=(0,1,1)T\alpha_{1}=(1,0,2)^{T},\alpha_{2}=(0,1,-1)^{T}都是Ax=0Ax=0的解,则AA可以是以下哪个

(211422)(201011) \begin{pmatrix} -2 & 1 & 1 \\ 4 & -2 & -2 \end{pmatrix}\quad \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}

 

α1,α2\alpha_{1},\alpha_{2}线性无关,即

nr(A)2r(A)1 n-r(A)\geq2\Rightarrow r(A)\leq1

因此显然不是(201011)\begin{pmatrix}2 & 0 & 1 \\ 0 & 1 & 1\end{pmatrix}

代入验证

(211422)(102)=(00) \begin{pmatrix} -2 & 1 & 1 \\ 4 & -2 & -2 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix}

因此是(211422)\begin{pmatrix}-2 & 1 & 1 \\ 4 & -2 & -2\end{pmatrix}

 

例:求一个齐次线性方程组,使其基础解系为

η1=(4,3,1,2)T,η2=(0,1,3,2)T \eta_{1}=(4,3,1,2)^{T},\eta_{2}=(0,1,3,-2)^{T}

 

Ax=0Ax=0为所求

 

这里AA一定是不唯一的

 

由解η1=(4,3,1,2)T\eta_{1}=(4,3,1,2)^{T}可知,该方程组有四个未知数

η1=(4,3,1,2)T,η2=(0,1,3,2)T\eta_{1}=(4,3,1,2)^{T},\eta_{2}=(0,1,3,-2)^{T}线性无关,知解的秩为22,即nr(A)=2r(A)=2方程的个数2n-r(A)=2\Rightarrow r(A)=2\Rightarrow方程的个数\geq2

构造2×42\times 4AA,有

A(η1,η2)=(Aη1,Aη2)=(0,0)=0(η1Tη2T)AT=0 A(\eta_{1},\eta_{2})=(A \eta_{1},A \eta_{2})=(0,0)=0\Rightarrow \begin{pmatrix} \eta_{1}^{T} \\ \eta_{2}^{T} \end{pmatrix}A^{T}=0

(η1Tη2T)=B2×4,AT=(α1,α2)4×2\begin{pmatrix}\eta_{1}^{T} \\ \eta_{2}^{T}\end{pmatrix}=B_{2\times 4},A^{T}=(\alpha_{1},\alpha_{2})_{4\times2},有

B(α1,α2)=(Bα1,Bα2)=(0,0) B(\alpha_{1},\alpha_{2})=(B \alpha_{1},B \alpha_{2})=(0,0)

α1,α2\alpha_{1},\alpha_{2}Bx=0Bx=0线性无关的解

 

此处α1,α2\alpha_{1},\alpha_{2}Bx=0Bx=0线性无关的解,由于AA的秩为22,且AA2×42\times4的矩阵。

如果设的AAn×4(n>2)n\times4(n>2)的矩阵,则α1,α2\alpha_{1},\alpha_{2}不一定是Bx=0Bx=0线性无关的解,但也可以设α1,α2\alpha_{1},\alpha_{2}Bx=0Bx=0线性无关的解,后续处理基本一致

 

B=(η1Tη2T)=(43120132)(10220132) B=\begin{pmatrix} \eta_{1}^{T} \\ \eta_{2}^{T} \end{pmatrix}=\begin{pmatrix} 4 & 3 & 1 & 2 \\ 0 & 1 & 3 & -2 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 3 & -2 \end{pmatrix}

nr(B)=42=2n-r(B)=4-2=2,自由变量x3,x4x_{3},x_{4}

Bx=0Bx=0的基础解系为

(2,3,1,0)T,(2,2,0,1)T (2,-3,1,0)^{T},(-2,2,0,1)^{T}

A=(α1Tα2T)=(23102201) A=\begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \end{pmatrix}=\begin{pmatrix} 2 & -3 & 1 & 0 \\ -2 & 2 & 0 & 1 \end{pmatrix}

 

例:A4×5,α1,α2,α3A_{4\times5},\alpha_{1},\alpha_{2},\alpha_{3}ATx=0A^{T}x=0的基础解系,则秩r(A)=()r(A)=()

 

A4×5A5×4TA_{4\times5}\rightarrow A^{T}_{5\times4},由题意知ATx=0A^{T}x=0基础解系由33个解向量构成

nr(AT)注意此处是AT=4r(AT)=3r(AT)=1 n-\underbrace{r(A^{T})}_{注意此处是A^{T}}=4-r(A^{T})=3\Rightarrow r(A^{T})=1

r(A)=1r(A)=1

 

系数矩阵未必需要化成行最简,只要是行阶梯矩阵,每行的主元不在首列也可以

 

例:{x1+x23x4x5=0x1x2+4x3x4=04x12x2+12x32x43x5=0\begin{cases}x_{1}+x_{2}-3x_{4}-x_{5}=0\\x_{1}-x_{2}+4x_{3}-x_{4}=0\\4x_{1}-2x_{2}+12x_{3}-2x_{4}-3x_{5}=0\end{cases}

 

A=(1103111410421223)(11031 2421   21)可以继续按正常思路化成行最简(102032 1201   112) \begin{aligned} A&=\begin{pmatrix} 1 & 1 & 0 & -3 & -1 \\ 1 & -1 & 4 & -1 & 0 \\ 4 & -2 & 12 & -2 & -3 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 1 & 0 & -3 & -1 \\  & 2 & -4 & -2 & -1 \\  &  &  & 2 & -1 \end{pmatrix}\\ &可以继续按正常思路化成行最简\\ &\rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 & - \frac{3}{2} \\  & 1 & -2 & 0 & -1 \\  &  &  & 1 & - \frac{1}{2} \end{pmatrix} \end{aligned}

同解方程组

{x1+2x332x5=0x22x3x5=0x412x5=0 \begin{cases} x_{1}+2x_{3}- \frac{3}{2}x_{5}=0 \\ x_{2}-2x_{3}-x_{5}=0 \\ x_{4}- \frac{1}{2}x_{5}=0 \end{cases}

x3=0,x5=0x_{3}=0,x_{5}=0得,η1=(2,2,1,0,0)T\eta_{1}=(-2,2,1,0,0)^{T}

x3=0,x5=1x_{3}=0,x_{5}=1得,η2=(32,1,0,12,1)T\eta_{2}=(\frac{3}{2},1,0,\frac{1}{2},1)^{T}

 

也可以把主元挪一下位置,避免出现分数A(11031 2421   21)(11050 2440   21)(10230 1220   21) \begin{aligned} &也可以把主元挪一下位置,避免出现分数\\ A&\rightarrow \begin{pmatrix} 1 & 1 & 0 & -3 & -1 \\  & 2 & -4 & -2 & -1 \\  &  &  & 2 & -1 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 1 & 0 & -5 & 0 \\  & 2 & -4 & -4 & 0 \\  &  &  & -2 & 1 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & 0 & 2 & -3 & 0 \\  & 1 & -2 & -2 & 0 \\  &  &  & -2 & 1 \end{pmatrix} \end{aligned}

x3=1,x4=0x_{3}=1,x_{4}=0得,η1=(2,2,1,0,0)T\eta_{1}=(-2,2,1,0,0)^{T}

x3=0,x4=1x_{3}=0,x_{4}=1得,η2=(3,2,0,1,2)T\eta_{2}=(3,2,0,1,2)^{T}

 

Ax=bAx=b

定理:Ax=bAx=b有解r(A)=r(Aˉ)\Leftrightarrow r(A)=r(\bar{A})

唯一解:r(A)=r(Aˉ)=nr(A)=r(\bar{A})=n

\infty解:r(A)=r(Aˉ)<nr(A)=r(\bar{A})<n

Ax=bAx=b无解r(A)+1=r(Aˉ)\Leftrightarrow r(A)+1=r(\bar{A})

 

定理(解的结构):设α\alpha是方程组Ax=bAx=b的解,η1,η2,,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}是方程组Ax=0Ax=0的基础解系,则方程组Ax=bAx=b的通解为

α+k1η1++ktηt \alpha+k_{1}\eta_{1}+\cdots+k_{t}\eta_{t}

其中k1,k2,,ktk_{1},k_{2},\cdots,k_{t}是任意常数

 

解的性质

  • 如果η1,η2\eta_{1},\eta_{2}Ax=0Ax=0的解,则k1η1+k2η2k_{1}\eta_{1}+k_{2}\eta_{2}仍是Ax=0Ax=0的解

  • 如果α1,α2\alpha_{1},\alpha_{2}Ax=bAx=b的解,则α1α2\alpha_{1}-\alpha_{2}Ax=0Ax=0的解

  • 如果α\alphaAx=bAx=b的解,η\etaAx=0Ax=0的解,则α+η\alpha+\etaAx=bAx=b的解

 

例:{x1+x2+x3+x4+x5=22x1+3x2+x3+x43x5=0x1+2x3+3x4+3x5=44x1+5x2+3x3+2x4+2x5=6\begin{cases}x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=2\\2x_{1}+3x_{2}+x_{3}+x_{4}-3x_{5}=0\\x_{1}+2x_{3}+3x_{4}+3x_{5}=4\\4x_{1}+5x_{2}+3x_{3}+2x_{4}+2x_{5}=6\end{cases}

 

对增广矩阵作初等行变换

Aˉ=(111112231130102334453226)(10201210 11086   132    00)nr(A)=53=2 \begin{aligned} \bar{A}&=\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 2 \\ 2 & 3 & 1 & 1 & -3 & 0 \\ 1 & 0 & 2 & 3 & 3 & 4 \\ 4 & 5 & 3 & 2 & 2 & 6 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 & 12 & 10 \\  & 1 & -1 & 0 & -8 & -6 \\  &  &  & 1 & -3 & -2 \\  &  &  &  & 0 & 0 \end{pmatrix}\\ n-r(A)&=5-3=2 \end{aligned}

由同解方程组,得

{x1=102x312x5x2=6+x3+8x5x4=2+3x5 \begin{cases} x_{1}=10-2x_{3}-12x_{5} \\ x_{2}=-6+x_{3}+8x_{5} \\ x_{4}=-2+3x_{5} \end{cases}

(x3x5)=(00)\begin{pmatrix}x_{3} \\ x_{5}\end{pmatrix}=\begin{pmatrix}0 \\ 0\end{pmatrix},特解为

α=(10,6,0,2,0)T \alpha=(10,-6,0,-2,0)^{T}

对应的齐次方程组

{x1=2x312x5x2=x3+8x5x4=3x5 \begin{cases} x_{1}=-2x_{3}-12x_{5} \\ x_{2}=x_{3}+8x_{5} \\ x_{4}=3x_{5} \end{cases}

(x3x5)\begin{pmatrix}x_{3} \\ x_{5}\end{pmatrix}(10)\begin{pmatrix}1 \\ 0\end{pmatrix}(01)\begin{pmatrix}0 \\ 1\end{pmatrix}

得基础解系

η1=(2,1,1,0,0)T,η2=(12,8,0,3,1)T \eta_{1}=(-2,1,1,0,0)^{T},\eta_{2}=(-12,8,0,3,1)^{T}

方程组通解

α+k1η1+k2η2=(106020)+k1(21100)+k2(128031) \alpha+k_{1}\eta_{1}+k_{2}\eta_{2}=\begin{pmatrix} 10 \\ -6 \\ 0 \\ -2 \\ 0 \end{pmatrix}+k_{1}\begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+k_{2}\begin{pmatrix} -12 \\ 8 \\ 0 \\ 3 \\ 1 \end{pmatrix}

 

用提参数的方式也同理,用该方法,不需要包括求通解以下的所有步骤

 

x3=t,x5x_{3}=t,x_{5},得

{x1=102t12ux2=6+t+8ux3=tx4=2+3ux5=u \begin{cases} x_{1}=10-2t-12u \\ x_{2}=-6+t+8u \\ x_{3}=t \\ x_{4}=-2+3u \\ x_{5}=u \end{cases}

方程组通解

x=(106020)+t(21100)+u(128031) x=\begin{pmatrix} 10 \\ -6 \\ 0 \\ -2 \\ 0 \end{pmatrix}+t\begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+u\begin{pmatrix} -12 \\ 8 \\ 0 \\ 3 \\ 1 \end{pmatrix}

 

例:{x1+x2+ax3=4x1+ax2+x3=a2x1x2+2x3=4\begin{cases}x_{1}+x_{2}+ax_{3}=4\\-x_{1}+ax_{2}+x_{3}=a^{2}\\x_{1}-x_{2}+2x_{3}=-4\end{cases}有无穷多解,求aa的值并求方程组的通解

 

对于化简有参数的系数矩阵,尽量将参数放在被减行,即尽量往下放,尽量不在主元处出现未知数

用秩计算未知数,系数矩阵只需要化简到行阶梯形式即可

 

Aˉ=(11a41a1a21124)(112411a41a1a2)(112402a280a13a24)(1124 2a28  12(a+1)(4a)a(a4)) \begin{aligned} \bar{A}&=\begin{pmatrix} 1 & 1 & a & 4 \\ -1 & a & 1 & a^{2} \\ 1 & -1 & 2 & -4 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & -1 & 2 & -4 \\ 1 & 1 & a & 4 \\ -1 & a & 1 & a^{2} \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & -1 & 2 & -4 \\ 0 & 2 & a-2 & 8 \\ 0 & a-1 & 3 & a^{2}-4 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & -1 & 2 & -4 \\  & 2 & a-2 & 8 \\  &  & \frac{1}{2}(a+1)(4-a) & a(a-4) \end{pmatrix} \end{aligned}

方程组有\inftyr(A)=r(Aˉ)<n\Leftrightarrow r(A)=r(\bar{A})<n,因此a=4a=4

Aˉ(1124 228  00)(1030 114  00) \bar{A}\rightarrow \begin{pmatrix} 1 & -1 & 2 & -4 \\  & 2 & 2 & 8 \\  &  & 0 & 0 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\  & 1 & 1 & 4 \\  &  & 0 & 0 \end{pmatrix}

x3=0x_{3}=0,特解λ=(0,4,0)T\lambda=(0,4,0)^{T}

x3=1x_{3}=1,基础解系η=(3,1,1)T\eta=(-3,-1,1)^{T}

通解即为x=α+kη,kx=\alpha+k \eta,k为任意常数

 

例:{x1+3x2+2x3+x4=1x2+ax3a4=1x1+2x2+3x4=3\begin{cases}x_{1}+3x_{2}+2x_{3}+x_{4}=1\\x_{2}+ax_{3}-a_{4}=-1\\x_{1}+2x_{2}+3x_{4}=3\end{cases}

 

Aˉ=(1321101aa112033)(13211 1222  a22a1) \begin{aligned} \bar{A}=\begin{pmatrix} 1 & 3 & 2 & 1 & 1 \\ 0 & 1 & a & -a & -1 \\ 1 & 2 & 0 & 3 & 3 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 3 & 2 & 1 & 1 \\  & 1 & 2 & -2 & 2 \\  &  & a-2 & 2-a & 1 \end{pmatrix} \end{aligned}

显然r(A)<nr(A)<n,因此不可能有唯一解

a=2a=2时,r(A)=2,r(Aˉ)=3r(A)=2,r(\bar{A})=3,方程组无解

a2a\ne2时,r(A)=r(Aˉ)=3<n=4r(A)=r(\bar{A})=3<n=4,方程组无穷多解

Aˉ(132110122200111a2)(1303a4a2 10022aa2  111a2)(10037a10a2 10022aa2  111a2) \begin{aligned} \bar{A}&\rightarrow \begin{pmatrix} 1 & 3 & 2 & 1 & 1 \\ 0 & 1 & 2 & -2 & -2 \\ 0 & 0 & 1 & -1 & \frac{1}{a-2} \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 3 & 0 & 3 & \frac{a-4}{a-2} \\  & 1 & 0 & 0 & \frac{2-2a}{a-2} \\  &  & 1 & -1 & \frac{1}{a-2} \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 & \frac{7a-10}{a-2} \\  & 1 & 0 & 0 & \frac{2-2a}{a-2} \\  &  & 1 & -1 & \frac{1}{a-2} \end{pmatrix} \end{aligned}

自由变量x4x_{4}

特解:α=(7a10a2,22aa2,1a2,0)T\alpha=(\frac{7a-10}{a-2}, \frac{2-2a}{a-2}, \frac{1}{a-2},0)^{T}

基础解系:η=(3,0,1,1)T\eta=(-3,0,1,1)^{T}

通解即为x=α+kη,kx=\alpha+k \eta,k为任意常数

 

例:{λx1+x2+x3=λ3x1+λx2+x3=2x1+x2+λx3=2\begin{cases}\lambda x_{1}+x_{2}+x_{3}=\lambda-3\\ x_{1}+\lambda x_{2}+x_{3}=-2\\x_{1}+x_{2}+\lambda x_{3}=-2\end{cases}

 

Aˉ=(λ11λ31λ1211λ2)(λ11λ31λλ101λ1λ0λ11λ) \bar{A}=\begin{pmatrix} \lambda & 1 & 1 & \lambda-3 \\ 1 & \lambda & 1 & -2 \\ 1 & 1 & \lambda & -2 \end{pmatrix}\rightarrow \begin{pmatrix} \lambda & 1 & 1 & \lambda-3 \\ 1-\lambda & \lambda-1 & 0 & 1-\lambda \\ 1-\lambda & 0 & \lambda-1 & 1-\lambda \end{pmatrix}

如果λ=1\lambda=1

Aˉ(111200000000) \bar{A}\rightarrow \begin{pmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}

解为

x=(200)+k1(110)T+k2(101) x=\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}+k_{1}\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}^{T}+k_{2}\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}

如果λ1\lambda\ne1

Aˉ(λ11λ311011011)(λ+200λ111011011) \bar{A}\rightarrow \begin{pmatrix} \lambda & 1 & 1 & \lambda-3 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 \end{pmatrix}\rightarrow \begin{pmatrix} \lambda+2 & 0 & 0 & \lambda-1 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 \end{pmatrix}

λ=2\lambda=-2,方程组无解

λ2,λ1\lambda\ne-2,\lambda\ne1,方程组有唯一解,解为

x=(λ1λ+2 3λ+23λ+2) x=\begin{pmatrix} \frac{\lambda-1}{\lambda+2} \\  - \frac{3}{\lambda+2} \\ - \frac{3}{\lambda+2} \end{pmatrix}

方程组的应用

例:求和矩阵A=(1213)A=\begin{pmatrix}1 & 2 \\ -1 & 3\end{pmatrix}可交换矩阵

 

X=(x1x2x3x4)X=\begin{pmatrix}x_{1} & x_{2} \\ x_{3} & x_{4}\end{pmatrix}AA可交换,即AX=XAAX=XA

(1213)(x1x2x3x4)=(x1x2x3x4)(1213)(x1+2x3x2+2x4x1+3x3x2+3x4)=(x1x22x1+3x2x3x42x3+3x4) \begin{aligned} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}\begin{pmatrix}x_{1} & x_{2} \\ x_{3} & x_{4}\end{pmatrix}&=\begin{pmatrix}x_{1} & x_{2} \\ x_{3} & x_{4}\end{pmatrix}\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}\\ \begin{pmatrix} x_{1}+2x_{3} & x_{2}+2x_{4} \\ -x_{1}+3x_{3} & -x_{2}+3x_{4} \end{pmatrix}&=\begin{pmatrix} x_{1}-x_{2} & 2x_{1}+3x_{2} \\ x_{3}-x_{4} & 2x_{3}+3x_{4} \end{pmatrix} \end{aligned}

即有

{x2+2x3=02x1+2x22x4=0x1+2x3+x4=0x2+2x3=0 \begin{cases} x_{2}+2x_{3}=0 \\ 2x_{1}+2x_{2}-2x_{4}=0 \\ -x_{1}+2x_{3}+x_{4}=0 \\ x_{2}+2x_{3}=0 \end{cases}

系数矩阵

B=(0120220210210120)(1021  012000000000) B=\begin{pmatrix} 0 & 1 & 2 & 0 \\ 2 & 2 & 0 & -2 \\ -1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -2 & -1  \\  0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}

 

结果是为了求矩阵一般用提参数的方法,而不是0,10,1

 

自由变量x3,x4x_{3},x_{4},令x3=t,x4=ux_{3}=t,x_{4}=u

x1=2t+u,x2=2t x_{1}=2t+u,x_{2}=-2t

因此

X=(2t+u2ttu)t,u为任意常数 X=\begin{pmatrix} 2t+u & -2t \\ t & u \end{pmatrix}\quad t,u 为任意常数

 

例:(123234)X=(4556)\begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 4\end{pmatrix}X=\begin{pmatrix}4 & 5 \\ 5 & 6\end{pmatrix},则X=()X=()

 

如果(123234)\begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 4\end{pmatrix}为方阵且可逆,则只需要左乘其逆矩阵即可,但本题显然不可逆

 

由题意得X3×2X_{3\times2}

(123234)(x1y1x2y2x3y3)=(4556) \begin{pmatrix}1 & 2 & 3 \\ 2 & 3 & 4\end{pmatrix}\begin{pmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ x_{3} & y_{3} \end{pmatrix}=\begin{pmatrix}4 & 5 \\ 5 & 6\end{pmatrix}

 

此处考虑到XX不同列乘积最后形成的系数矩阵相同,所以考虑不同列设成不同组未知数。

如果统一设成x1,x2,,x6x_{1},x_{2},\cdots,x_{6}也能做出来,计算难度相差不大

 

可得

{x1+2x2+3x3=42x1+3x2+4x3=5{y1+2y2+3y3=52y1+3y2+4y3=6 \begin{cases} x_{1}+2x_{2}+3x_{3}=4 \\ 2x_{1}+3x_{2}+4x_{3}=5 \end{cases}\quad \begin{cases} y_{1}+2y_{2}+3y_{3}=5 \\ 2y_{1}+3y_{2}+4y_{3}=6 \end{cases}

系数矩阵相同,可得大的增广矩阵

(1234523456)(10123 1234) \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 & -3 \\  & 1 & 2 & 3 & 4 \end{pmatrix}

{x1=2+k1x2=32k1x3=k1{y1=3+k2y2=42k2y3=k2 \begin{cases} x_{1}=-2+k_{1} \\ x_{2}=3-2k_{1} \\ x_{3}=k_{1} \end{cases}\quad \begin{cases} y_{1}=-3+k_{2} \\ y_{2}=4-2k_{2} \\ y_{3}=k_{2} \end{cases}

因此,可得

X=(2k13+k232k142k2k1k2)k1,k2为任意常数 X=\begin{pmatrix} -2k_{1} & -3+k_{2} \\ 3-2k_{1} & 4-2k_{2} \\ k_{1} & k_{2} \end{pmatrix}\quad k_{1},k_{2}为任意常数

 

例:设α1=(a,2,10)T,α2=(2,1,5)T,α3=(1,1,4)T,β=(1,b,c)T\alpha_{1}=(a,2,10)^{T},\alpha_{2}=(-2,1,5)^{T},\alpha_{3}=(-1,1,4)^{T},\beta=(1,b,c)^{T},求a,b,ca,b,c满足的条件

  1. β\beta可由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出,且表示方法唯一

  2. β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出

  3. β\beta可由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出但表示方法不唯一,并写出一般表达式

 

x1α2+x2α3+x3α3=β(1)x_{1}\alpha_{2}+x_{2}\alpha_{3}+x_{3}\alpha_{3}=\beta\tag{1}

A=α1α2α3=a212111054=(a+4) |A|=\begin{vmatrix} \alpha_{1}&\alpha_{2}&\alpha_{3} \end{vmatrix}=\begin{vmatrix} a&-2&-1\\2&1&1\\10&5&4 \end{vmatrix}=-(a+4)

因此,

a4a\ne-4时,A0|A|\ne0,方程组有唯一解,β\beta可由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出,且表示方法唯一

a=4a=-4

Aˉ=(4211211b1054c)(211b0012b+10003bc1) \bar{A}=\begin{pmatrix} -4 & -2 & -1 & 1 \\ 2 & 1 & 1 & b \\ 10 & 5 & 4 & c \end{pmatrix}\rightarrow \begin{pmatrix} 2 & 1 & 1 & b \\ 0 & 0 & 1 & 2b+1 \\ 0 & 0 & 0 & 3b-c-1 \end{pmatrix}

因此,当a=4,3bc1a=-4,3b-c\ne1时,方程组无解,即β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出

a=4,3bc=1a=-4,3b-c=1,有r(A)=r(Aˉ)=2<3r(A)=r(\bar{A})=2<3,方程组有\infty组解,即β\beta可由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出但表示方法不唯一

Aˉ(211b0012b+10003bc1)(210b10012b+10000) \bar{A}\rightarrow \begin{pmatrix} 2 & 1 & 1 & b \\ 0 & 0 & 1 & 2b+1 \\ 0 & 0 & 0 & 3b-c-1 \end{pmatrix}\rightarrow\begin{pmatrix} 2 & 1 & 0 & -b-1 \\ 0 & 0 & 1 & 2b+1 \\ 0 & 0 & 0 & 0 \end{pmatrix}

x1=tx_{1}=t,则x2=2tb1,x3=2b+1x_{2}=-2t-b-1,x_{3}=2b+1

(1)(1)

β=tα1(2t+b+1)α2+(2b+1)α3t为任意常数 \beta=t \alpha_{1}-(2t+b+1)\alpha_{2}+(2b+1)\alpha_{3}\quad t为任意常数

 

例:设三阶矩阵A=(α1α2α3),B=(β1β2β3)A=\begin{pmatrix}\alpha_{1} & \alpha_{2} & \alpha_{3}\end{pmatrix},B=\begin{pmatrix}\beta_{1} & \beta_{2} & \beta_{3}\end{pmatrix},若向量组α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}可由向量β1,β2,β3\beta_{1},\beta_{2},\beta_{3}线性表出,证明:BTx=0B^{T}x=0的解,均为Bx=0Bx=0的解

 

由于向量组α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}可由向量β1,β2,β3\beta_{1},\beta_{2},\beta_{3}线性表出,则有

BC=ACTBT=AT BC=A\Rightarrow C^{T}B^{T}=A^{T}

由题意

ATx=(CTBT)x=CT(BTx)=CT0=0 \begin{aligned} A^{T}x=(C^{T}B^{T})x=C^{T}(B^{T}x)=C^{T}0=0 \end{aligned}

原题得证