【线性代数基础进阶】向量

144 阅读6分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

nn维向量

nn个数a1,a2,,ana_{1},a_{2},\cdots,a_{n}构成的有序数组称为nn维向量

 

(a1a2an)\begin{pmatrix}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{pmatrix}(a1a2an)T\begin{pmatrix}a_{1} & a_{2} & \cdots & a_{n}\end{pmatrix}^{T}列向量

(a1a2an)\begin{pmatrix}a_{1} & a_{2} & \cdots & a_{n}\end{pmatrix}行向量

其中aia_{i}称为向量的第ii个分量(i=1,2,,n)(i=1,2,\cdots,n)

 

如果向量的所有分量都是00,就称其为零向量,记作O=(0,0,,0)TO=(0,0,\cdots,0)^{T}

 

nn维向量α=(a1,a2,,an)T,β=(b1,b2,,bn)T\alpha=(a_{1},a_{2},\cdots,a_{n})^{T},\beta=(b_{1},b_{2},\cdots,b_{n})^{T}

  • α=βa1=b1,a2=b2,,an=bn\alpha=\beta\Leftrightarrow a_{1}=b_{1},a_{2}=b_{2},\cdots,a_{n}=b_{n}

  • α+β=(a1+b1,a2+b2,,an+bn)T\alpha+\beta=(a_{1}+b_{1},a_{2}+b_{2},\cdots,a_{n}+b_{n})^{T}

  • kα=(ka1,ka2,,kan)Tk \alpha=(ka_{1},ka_{2},\cdots,ka_{n})^{T}

         特别的,0α=(0,0,,0)T0\alpha=(0,0,\cdots,0)^{T}

 

运算规律

α+β=β+α\alpha+\beta=\beta+\alpha

(α+β)+γ=α+(β+γ)(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)

α+0=α\alpha+0=\alpha

α+(α)=0\alpha+(-\alpha)=0

1α=α1\cdot \alpha=\alpha

k(lα)=(kl)αk(l \alpha)=(kl)\alpha

k(α+β)=kα+kβk(\alpha+\beta)=k \alpha+k \beta

(k+l)α=kα+lα(k+l)\alpha=k \alpha+l \alpha

 

解方程组

例:{x1+x2+x3=53x1+2x2+x3=15x2+2x3=2\begin{cases}x_{1}+x_{2}+x_{3}=5 \\3x_{1}+2x_{2}+x_{3}=15\\x_{2}+2x_{3}=2\end{cases}

 

对增广矩阵作初等行变换

Aˉ=(1115321 130122)(111501220122)(111501220000)(101301220000) \begin{aligned} \bar{A}&=\begin{pmatrix} 1 & 1 & 1 & 5 \\ 3 & 2 & 1  & 13 \\ 0 & 1 & 2 & 2 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 1 & 1 & 5 \\ 0 & -1 & -2 & -2 \\ 0 & 1 & 2 & 2 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & 1 & 1 & 5 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{aligned}

同解方程组为

{x1x3=3x2+2x3=2 \begin{cases} x_{1}-x_{3}=3 \\ x_{2}+2x_{3}=2 \end{cases}

x3=t\forall x_{3}=t,方程组有\infty

{x1=3+tx2=22tx3=t(x1x2x3)=(320)+t(121) \begin{cases} x_{1}=3+t \\ x_{2}=2-2t \\ x_{3}=t \end{cases}或\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}=\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}+t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}

 

x3=0x1=3,x2=2x_{3}=0\Rightarrow x_{1}=3,x_{2}=2

特解

α=(3,2,0) \alpha=(3,2,0)

x3=1x1=1,x2=2x_{3}=1\Rightarrow x_{1}=1,x_{2}=-2

基础解系

η=(1,2,1)T \eta=(1,-2,1)^{T}

因此x=α+kη=(320)+k(121)x=\alpha+k \eta=\begin{pmatrix}3 \\ 2 \\ 0\end{pmatrix}+k \begin{pmatrix}1 \\ -2 \\ 1\end{pmatrix}

 

解方程组只能行变换

 

例:{x12x2+x3+2x4=0x1+x22x34x4=0x15x2+4x3+8x4=0\begin{cases}x_{1}-2x_{2}+x_{3}+2x_{4}=0\\x_{1}+x_{2}-2x_{3}-4x_{4}=0\\x_{1}-5x_{2}+4x_{3}+8x_{4}=0\end{cases}

 

对系数矩阵作初等行变换

A=(121211241548)(101201120000) A=\begin{pmatrix} 1 & -2 & 1 & 2 \\ 1 & 1 & -2 & -4 \\ 1 & -5 & 4 & 8 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}

通解方程组

{x1x32x4=0x2x32x4=0 \begin{cases} x_{1}-x_{3}-2x_{4}=0 \\ x_{2}-x_{3}-2x_{4}=0 \end{cases}

其中x3,x4x_{3},x_{4}为自由变量,令x3=t,x4=ux_{3}=t,x_{4}=u

{x1=t+2ux2=t+2ux3=tx4=ux=t(1110)+u(2201) \begin{cases} x_{1}=t+2u \\ x_{2}=t+2u \\ x_{3}=t \\ x_{4}=u \end{cases}或x=t \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}+u \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix}

 

根据nr(A)=42=2n-r(A)=4-2=2,即有两个自由变量

x3=1,x4=0x1=1,x2=1x_{3}=1,x_{4}=0\Rightarrow x_{1}=1,x_{2}=1

η1=(1,1,1,0)T \eta_{1}=(1,1,1,0)^{T}

x3=0,x4=1x1=2,x2=2x_{3}=0,x_{4}=1\Rightarrow x_{1}=2,x_{2}=2

η2=(2,2,0,1)T \eta_{2}=(2,2,0,1)^{T}

基础解系

x=k1(1110)+k2(2201) x=k_{1}\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}+k_{2}\begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix}

 

线性表出(组合)

线性组合定义:mmnn维向量α1,α2,cdots,αm\alpha_{1},\alpha_{2},cdots,\alpha_{m}mm个实数k1,k2,,kmk_{1},k_{2},\cdots,k_{m},称

k1α1+k2α2++kmαm k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}

是向量α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}的一个线性组合,k1,k2,,kmk_{1},k_{2},\cdots,k_{m}称为这个线性组合的系数

 

线性表出定义:如果向量β\beta能表示为α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}的线性组合,即存在一组数k1,k2,,kmk_{1},k_{2},\cdots,k_{m},使

β=k1α1+k2α2++kmαm \beta=k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}

则称向量β\beta可以由α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性表出(示)

 

例:设α1=(1,2,3)T,α2=(1,3,4)T,α3=(2,1,1)T,β=(2,5,t)T\alpha_{1}=(1,2,3)^{T},\alpha_{2}=(1,3,4)^{T},\alpha_{3}=(2,-1,1)^{T},\beta=(2,5,t)^{T},问tt取何值时

  • 向量β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表示

  • 向量β\beta能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表示,并且写出表达式

 

x1α1+x2α2+x3α3=βx_{1}\alpha_{1}+x_{2}\alpha_{2}+x_{3}\alpha_{3}=\beta

x1(1,2,3)T+x2(1,3,4)T+x3(2,1,1)T=(2,5,t)T(x1+x2+2x3,2x1+3x2x3,3x1+4x2+x3)T=(2,5,t)T{x1+x2+2x3=22x1+3x2x3=53x1+4x2+x3=t \begin{gathered} x_{1}(1,2,3)^{T}+x_{2}(1,3,4)^{T}+x_{3}(2,-1,1)^{T}=(2,5,t)^{T}\\ (x_{1}+x_{2}+2x_{3},2x_{1}+3x_{2}-x_{3},3x_{1}+4x_{2}+x_{3})^{T}=(2,5,t)^{T}\\ \begin{cases} x_{1}+x_{2}+2x_{3}=2 \\ 2x_{1}+3x_{2}-x_{3}=5 \\ 3x_{1}+4x_{2}+x_{3}=t \end{cases} \end{gathered}

对增广矩阵Aˉ=(α1,α2,α3,β)\bar{A}=(\alpha_{1},\alpha_{2},\alpha_{3},\beta)作初等行变换

Aˉ=(11222315341t)(11220151000t7) \begin{aligned} \bar{A}=\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 3 & -1 & 5 \\ 3 & 4 & 1 & t \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & t-7 \end{pmatrix} \end{aligned}

t7t\ne7时,方程组无解,即β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表示

t=7t=7时,

Aˉ(112201510000)(107101510000) \bar{A}\rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & 7 & 1 \\ 0 & 1 & -5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}

x3=kx2=1+5k,x1=17kx_{3}=k\Rightarrow x_{2}=1+5k,x_{1}=1-7k

因此β=(17k)α1+(1+5k)α2+kα3\beta=(1-7k)\alpha_{1}+(1+5k)\alpha_{2}+k \alpha_{3}

 

定理:向量β\beta可由α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性表出

\Leftrightarrow存在实数k1,k2,,kmk_{1},k_{2},\cdots,k_{m}使

k1α1+k2α2++kmαm=β k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}=\beta

\Leftrightarrow存在实数k1,k2,,kmk_{1},k_{2},\cdots,k_{m}使

(α1α2αm)(k1k2km)=β \begin{pmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \end{pmatrix}\begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{m} \end{pmatrix}=\beta

\Leftrightarrow方程组有解

(α1α2αm)(x1x2xm)=β \begin{pmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix}=\beta

r(α1α2αm)=r(α1α2αmβ)\Leftrightarrow r\begin{pmatrix}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m}\end{pmatrix}=r\begin{pmatrix}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} & \beta\end{pmatrix}

 

例:设α1=(1+λ,1,1)T,α2=(1,1+λ,1)T,α3=(1,1,1+λ)T,β=(0,λ,λ2)T\alpha_{1}=(1+\lambda,1,1)^{T},\alpha_{2}=(1,1+\lambda,1)^{T},\alpha_{3}=(1,1,1+\lambda)^{T},\beta=(0,\lambda,\lambda^{2})^{T},当λ\lambda为何值时

  • β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表示

  • β\beta能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表示,并写出该表达式

 

x1α1++x2α2+x3α3=βx_{1}\alpha_{1+}+x_{2}\alpha_{2}+x_{3}\alpha_{3}=\beta按分量写出方程组

{(1+λ)x1+x2+x3=0x1+(1+λ)x2+x3=λx1+x2+x(1+λ)x3=λ2 \begin{cases} (1+\lambda)x_1+x_2+x_3=0 \\ x_1+(1+\lambda)x_2+x_3=\lambda\\ x_1+x_2 +x(1+\lambda)x_3=\lambda^2 \end{cases}

 

此处可以用正常处理方法,也可以用类似爪型行列式的思路

由于只是要计算r(A)r(A)r(Aβ)r(A|\beta)之间的大小关系,所以AA的部分只要是三角矩阵即可,不一定必须是行最简矩阵

 

类似爪型行列式的思路

Aˉ=(1+λ11011+λ1λ111+λλ2)(1+λ110λλ0λλ0λλ2) \bar{A}=\begin{pmatrix}1+\lambda & 1 & 1 & 0 \\ 1 & 1+\lambda & 1 & \lambda \\ 1 & 1 & 1+\lambda & \lambda^{2}\end{pmatrix}\rightarrow \begin{pmatrix} 1+\lambda & 1 & 1 & 0 \\ -\lambda & \lambda & 0 & \lambda \\ -\lambda & 0 & \lambda & \lambda^{2} \end{pmatrix}

λ=0\lambda=0,同解方程组

x1+x2+x3=0 x_{1}+x_{2}+x_{3}=0

x2=t,x3=ux_{2}=t,x_{3}=u,得x1=tux_{1}=-t-u

β=(t+u)α1+tα2+uα3,t,u是任意常数 \beta=-(t+u)\alpha_{1}+t \alpha_{2}+u \alpha_{3},t,u是任意常数

λ0\lambda\ne0

Aˉ(1+λ1101101101λ)此处只要化成三角行列式即可,由于只能行变换因此根据爪型行列式考虑化成下三角形式(λ+300λ11101101λ) \begin{aligned} \bar{A}&\rightarrow\begin{pmatrix} 1+\lambda & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ -1 & 0 & 1 & \lambda \end{pmatrix}\\ &此处只要化成三角行列式即可,由于只能行变换\\ &因此根据爪型行列式考虑化成下三角形式\\ &\begin{pmatrix} \lambda+3 & 0 & 0 & -\lambda-1\\ -1 & 1 & 0 & 1\\ -1 & 0 & 1 & \lambda \end{pmatrix} \end{aligned}

λ=3\lambda=-3,方程组无解,β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出

λ3λ0\lambda\ne-3且\lambda\ne0,解出

x1=λ+1λ+3,x2=2λ+3,x3=λ2+2λ1λ+3 x_{1}=- \frac{\lambda+1}{\lambda+3},x_{2}=\frac{2}{\lambda+3},x_{3}=\frac{\lambda^{2}+2\lambda-1}{\lambda+3}

β=λ+1λ+3α1+2λ+3α2+λ2+2λ1λ+3α3 \beta=- \frac{\lambda+1}{\lambda+3}\alpha_{1}+\frac{2}{\lambda+3}\alpha_{2}+\frac{\lambda^{2}+2\lambda-1}{\lambda+3}\alpha_{3}

 

正常行最简矩阵思路

 

 > 为了化成行最简矩阵计算方便,尽量通过交换行,使第一行在化简前都是简单的数字,复杂的尽可能往第一行的后几列放

 

Aˉ=(1+λ11011+λ1λ111+λλ2)13行互换,第一行有更多简单的数字(111+λλ211+λ1λ1+λ111)正常从上向下化简(111+λλ20λλλλ200λ(λ+3)λ(12λλ2)) \begin{aligned} \bar{A}&=\begin{pmatrix}1+\lambda & 1 & 1 & 0 \\ 1 & 1+\lambda & 1 & \lambda \\ 1 & 1 & 1+\lambda & \lambda^{2}\end{pmatrix}\\ &将13行互换,第一行有更多简单的数字\\ &\rightarrow\begin{pmatrix} 1 & 1 & 1+\lambda & \lambda^{2} \\ 1 & 1+\lambda & 1 & \lambda \\ 1+\lambda & 1 & 1 & 1 \end{pmatrix}\\ &正常从上向下化简\\ &\rightarrow \begin{pmatrix} 1 & 1 & 1+\lambda & \lambda^{2} \\ 0 & \lambda & -\lambda & \lambda-\lambda^{2} \\ 0 & 0 & -\lambda(\lambda+3) & \lambda(1-2\lambda-\lambda^{2}) \end{pmatrix} \end{aligned}

如果要使β\beta能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出且唯一,即r(A)=r(Aβ)r(A)=r(A|\beta),故

λ(λ+3)0 -\lambda(\lambda+3)\ne0

λ0\lambda\ne0λ3\lambda\ne-3,解出

x1=λ+1λ+3,x2=2λ+3,x3=λ2+2λ1λ+3 x_{1}=- \frac{\lambda+1}{\lambda+3},x_{2}=\frac{2}{\lambda+3},x_{3}=\frac{\lambda^{2}+2\lambda-1}{\lambda+3}

β=λ+1λ+3α1+2λ+3α2+λ2+2λ1λ+3α3 \beta=- \frac{\lambda+1}{\lambda+3}\alpha_{1}+\frac{2}{\lambda+3}\alpha_{2}+\frac{\lambda^{2}+2\lambda-1}{\lambda+3}\alpha_{3}

如果要使β\beta能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出且不唯一,即r(A)=r(Aβ)r(A)=r(A|\beta),故

{λ(λ+3)=0λ(12λλ2)=0 \begin{cases} -\lambda(\lambda+3)=0 \\ \lambda(1-2\lambda-\lambda^{2})=0 \end{cases}

λ=0\lambda=0

如果要使β\beta不能由α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性表出,即r(A)r(Aβ)r(A)\ne r(A|\beta),故

{λ(λ+3)=0λ(12λλ2)0 \begin{cases} -\lambda(\lambda+3)=0 \\ \lambda(1-2\lambda-\lambda^{2})\ne0 \end{cases}

λ=3\lambda=-3

 

例:已知α1=(1,2,1)T,α2=(2,3,a)T,β1=(1,3,0)T,β2=(1,a+2,2)T\alpha_{1}=(1,2,1)^{T},\alpha_{2}=(2,3,a)^{T},\beta_{1}=(1,3,0)^{T},\beta_{2}=(1,a+2,-2)^{T}β1\beta_{1}不能由α1,α2\alpha_{1},\alpha_{2}表出,β2\beta_{2}能由α1,α2\alpha_{1},\alpha_{2}表出,则a=()a=()

 

由题意得x1α1+x2α2=β1无解,x1α1+x2α2=β2有解x_{1}\alpha_{1}+x_{2}\alpha_{2}=\beta_{1}无解,x_{1}\alpha_{1}+x_{2}\alpha_{2}=\beta_{2}有解

 

由于两个的系数矩阵一样,所以可以凑成一个大的增广矩阵

 

(1211233a+21a02)(1211011a00a3a22a3) \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 3 & a+2 \\ 1 & a & 0 & -2 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & a \\ 0 & 0 & a-3 & a^{2}-2a-3 \end{pmatrix}

{a30a22a3=0a=1 \begin{cases} a-3\ne0 \\ a^{2}-2a-3=0 \end{cases}\rightarrow a=-1

 

例:nn维向量α,β1,β2,β3,γ1,γ2\alpha,\beta_{1},\beta_{2},\beta_{3},\gamma_{1},\gamma_{2},若α\alpha可由β1,β2,β3\beta_{1},\beta_{2},\beta_{3}线性表出,β1,β2,β3\beta_{1},\beta_{2},\beta_{3}可由γ1,γ2\gamma_{1},\gamma_{2}线性表出,则α\alpha可由γ1,γ2\gamma_{1},\gamma_{2}线性表出

 

线性表出具有传递性

 

按已知条件,可设

α=k1β1+k2β2+k3β3β1=l11γ1+l12γ2β2=l21γ1+l22γ2β3=l31γ1+l32γ2 \begin{aligned} \alpha&=k_{1}\beta_{1}+k_{2}\beta_{2}+k_{3}\beta_{3}\\ \beta_{1}&=l_{11}\gamma_{1}+l_{12}\gamma_{2}\\ \beta_{2}&=l_{21}\gamma_{1}+l_{22}\gamma_{2}\\ \beta_{3}&=l_{31}\gamma_{1}+l_{32}\gamma_{2} \end{aligned}

于是

α=(k1l11+k2l21+k3l31)γ1+(k1l12+k2l22+k3l32)γ2 \alpha=(k_{1}l_{11}+k_{2}l_{21}+k_{3}l_{31})\gamma_{1}+(k_{1}l_{12}+k_{2}l_{22}+k_{3}l_{32})\gamma_{2}

α=(β1β2β3)(k1k2k3)=(γ1γ2)(l11l21l31l12l22l32)(k1k2k3)=(γ1γ2)(l11k1+l21k2+l31k3l12k1+l22k2+l32k3) \begin{aligned} \alpha&=\begin{pmatrix} \beta_{1} & \beta_{2} & \beta_{3} \end{pmatrix}\begin{pmatrix} k_{1} \\ k_{2} \\ k_{3} \end{pmatrix}\\ &=\begin{pmatrix} \gamma_{1} & \gamma_{2} \end{pmatrix}\begin{pmatrix} l_{11} & l_{21} & l_{31} \\ l_{12} & l_{22} & l_{32} \end{pmatrix}\begin{pmatrix} k_{1} \\ k_{2} \\ k_{3} \end{pmatrix}\\ &=\begin{pmatrix} \gamma_{1} & \gamma_{2} \end{pmatrix}\begin{pmatrix} l_{11}k_{1}+l_{21}k_{2}+l_{31}k_{3} \\ l_{12}k_{1}+l_{22}k_{2}+l_{32}k_{3} \end{pmatrix} \end{aligned}

线性相关

定义:对mmnn维向量α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m},若存在不全为00的实数k1,k2,,kmk_{1},k_{2},\cdots,k_{m}使

k1α1+k2α2++kmαm=0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}=0

成立,则其向量组α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性相关,否则称其线性无关

 

例:判断向量组α1=(1,2,1,4)T,α2=(0,1,5,3)T,α3=(2,5,3,5)T\alpha_{1}=(1,2,-1,4)^{T},\alpha_{2}=(0,-1,-5,3)^{T},\alpha_{3}=(2,5,3,5)^{T}的线性相关性

 

x1α1+x2α2+x3α3=0x_{1}\alpha_{1}+x_{2}\alpha_{2}+x_{3}\alpha_{3}=0,即

x1(1214)+x2(0153)+x3(2535)=(0000) x_{1}\begin{pmatrix} 1 \\ 2 \\ -1 \\ 4 \end{pmatrix}+x_{2}\begin{pmatrix} 0 \\ -1 \\ -5 \\ 3 \end{pmatrix}+x_{3}\begin{pmatrix} 2 \\ 5 \\ 3 \\ 5 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}

按分量写出

{x1+2x3=02x1x2+5x3=0x15x2+3x3=04x1+3x2+5x2=0 \begin{cases} x_{1}+2x_{3}=0 \\ 2x_{1}-x_{2}+5x_{3}=0 \\ -x_{1}-5x_{2}+3x_{3}=0 \\ 4x_{1}+3x_{2}+5x_{2}=0 \end{cases}

写出系数矩阵

(102215153435)(102011000000) \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 5 \\ -1 & -5 & 3 \\ 4 & 3 & 5 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}

同解方程组

{x1+2x3=0x2x3=0 \begin{cases} x_{1}+2x_{3}=0 \\ x_{2}-x_{3}=0 \end{cases}

有非零解

 

定理:向量组α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性相关

\Leftrightarrow存在不全为00k1,k2,,kmk_{1},k_{2},\cdots,k_{m},使

k1α1+k2α2++kmαm=0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}=0

\Leftrightarrow存在不全为00k1,k2,,kmk_{1},k_{2},\cdots,k_{m},使

(α1α2αm)(k1k2km)=0 \begin{pmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \end{pmatrix}\begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{m} \end{pmatrix}=0

\Leftrightarrow齐次方程组有非零解

(α1α2αm)(x1x2xm)=0 \begin{pmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix}=0

r(α1α2αm)<m\Leftrightarrow r \begin{pmatrix}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m}\end{pmatrix}<mmm为未知数的个数

 

推论:

  1. nnnn维向量α1,α2,,αm\alpha_{1},\alpha_{2},\cdots,\alpha_{m}线性相关α1α2αm=0\Leftrightarrow \begin{vmatrix}\alpha_{1}&\alpha_{2}&\cdots&\alpha_{m}\end{vmatrix}=0

  2. n+1n+1nn维向量必线性相关

 

例:A=(122212304),α=(a11)A=\begin{pmatrix}1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4\end{pmatrix},\alpha=\begin{pmatrix}a \\ 1 \\ 1\end{pmatrix},已知Aα,αA \alpha,\alpha线性相关,则a=()a=()

 

Aα=(a2a+33a+4) \begin{aligned} A \alpha=\begin{pmatrix} a \\ 2a+3 \\ 3a+4 \end{pmatrix} \end{aligned}

AαA \alphaα\alpha线性相关

aa=2a+31=3a+41 \frac{a}{a}= \frac{2a+3}{1}=\frac{3a+4}{1}

因此a=1a=-1

 

例:A=(α1α2αn),B=(β1β2βn),AB=(γ1γ2γn)A=\begin{pmatrix}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}\end{pmatrix},B=\begin{pmatrix}\beta_{1} & \beta_{2} & \cdots & \beta_{n}\end{pmatrix},AB=\begin{pmatrix}\gamma_{1} & \gamma_{2} & \cdots & \gamma_{n}\end{pmatrix}均为nn阶矩阵,记向量组(I)α1,α2,,αn;(II)β1,β2,,βn;(III)γ1,γ2,,γn(\text{I})\alpha_{1},\alpha_{2},\cdots,\alpha_{n};(\text{II})\beta_{1},\beta_{2},\cdots,\beta_{n};(\text{III})\gamma_{1},\gamma_{2},\cdots,\gamma_{n},若向量组(III)(\text{III})线性相关,证明(I),(II)(I),(II)中至少有一个线性相关

 

符合nnnn维向量,则有

(III)线性相关AB=0AB=0A=0B=0 \begin{aligned} (\text{III})线性相关\Leftrightarrow|AB|&=0\\ |A|\cdot|B|&=0\\|A|=0&或|B|=0 \end{aligned}

得证

 

定理:如果nn维向量α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性无关,α1,α2,,αn,β\alpha_{1},\alpha_{2},\cdots,\alpha_{n},\beta线性相关,则向量β\beta可由α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性表出,且表示方法唯一

证明:因为α1,α2,,αn,β\alpha_{1},\alpha_{2},\cdots,\alpha_{n},\beta线性相关,故存在不全为00k1,k2,,kn,kk_{1},k_{2},\cdots,k_{n},k,使得

k1α1+k2α2++knαn+kβ=0(1) k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{n}\alpha_{n}+k \beta=0\tag1

(反证)如果k=0k=0,则k1,k2,,knk_{1},k_{2},\cdots,k_{n}不全为00,而

k1α1+k2α2++knαn=0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{n}\alpha_{n}=0

与条件α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性无关矛盾,从而k0k\ne0,由(1)(1)

β=k1kα1k2kα2knkαn \beta=- \frac{k_{1}}{k}\alpha_{1}- \frac{k_{2}}{k}\alpha_{2}-\cdots- \frac{k_{n}}{k}\alpha_{n}

β\beta一定能由α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性表出

(反证)如果β\beta有两种不同的表示方法,设

β=x1α1+x2α2++xnαn=y1α1+y2α2++ynαn \begin{aligned} \beta&=x_{1}\alpha_{1}+x_{2}\alpha_{2}+\cdots+x_{n}\alpha_{n}\\ &=y_{1}\alpha_{1}+y_{2}\alpha_{2}+\cdots+y_{n}\alpha_{n} \end{aligned}

两式相减

(x1y1)α1+(x2y2)α2++(xnyn)αn=0 (x_{1}-y_{1})\alpha_{1}+(x_{2}-y_{2})\alpha_{2}+\cdots+(x_{n}-y_{n})\alpha_{n}=0

因有两种不同的表示x1y1,x2y2,,xnynx_{1}-y_{1},x_{2}-y_{2},\cdots,x_{n}-y_{n}不全为00α1,α2,,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}线性无关相矛盾,从而β\beta的表示法唯一

 

定理:向量组α1,α2,,αs(s2)\alpha_{1},\alpha_{2},\cdots,\alpha_{s}(s\geq2)线性相关\Leftrightarrow存在aia_{i}可由其余的向量线性表出

 

必要性

α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性相关,则存在不全为00k1,k2,,ksk_{1},k_{2},\cdots,k_{s}

k1α1+k2α2++ksαs=0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{s}\alpha_{s}=0

不妨设k10k_{1}\ne0,则有

k1α1=k2α2ksαs k_{1}\alpha_{1}=-k_{2}\alpha_{2}-\cdots-k_{s}\alpha_{s}

于是

α1=k2k1α2ksk1αs \alpha_{1}=- \frac{k_{2}}{k_{1}}\alpha_{2}-\cdots- \frac{k_{s}}{k_{1}}\alpha_{s}

充分性

如果αi\alpha_{i}可由α1,,αi1,αi+1,,αs\alpha_{1},\cdots, \alpha_{i-1},\alpha_{i+1},\cdots ,\alpha_{s}线性表出,设

αi=k1α1++ki1αi1+ki+1αi+1++ksαs \alpha_{i}=k_{1}\alpha_{1}+\cdots+k_{i-1}\alpha_{i-1}+k_{i+1}\alpha_{i+1}+\cdots+k_{s}\alpha_{s}

即有

k1α1++ki1αi1αi+ki+1αi+1++ksαs=0 k_{1}\alpha_{1}+\cdots+k_{i-1}\alpha_{i-1}-\alpha_{i}+k_{i+1}\alpha_{i+1}+\cdots+k_{s}\alpha_{s}=0

组合系数

k1,,ki1,1,ki+1,,ks k_{1},\cdots,k_{i-1},-1,k_{i+1},\cdots,k_{s}

不全为00

 

定理:如果α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}可由β1,β2,,βt\beta_{1},\beta_{2},\cdots,\beta_{t}线性表出,且s>ts>t,则α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}必然线性相关

即多数向量能够用少数向量表示,则多数向量一定线性相关

推论:如果α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性无关,且α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}可由β1,β2,,βt\beta_{1},\beta_{2},\cdots,\beta_{t}线性表出,则sts\leq t

 

简单的线性无关证明题思路

k1α1+k2α2++ksαs=0k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{s}\alpha_{s}=0时,必有k1=0,k2=0,,ks=0k_{1}=0,k_{2}=0,\cdots,k_{s}=0,则称向量组α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}线性无关

 

例:已知AAnn阶可逆矩阵,α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}nn维线性无关向量,证明Aα1,Aα2,Aα3A \alpha_{1},A \alpha_{2},A \alpha_{3}线性无关

 

k1Aα1+k2Aα2+k3Aα3=0A(k1α1+k2α2+k3α3)=0k1α1+k2α2+k3α3=A10k1α1+k2α2+k3α3=0 \begin{aligned} k_{1}A \alpha_{1}+k_{2}A \alpha_{2}+k_{3}A \alpha_{3}&=0\\ A(k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3})&=0\\ k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}&=A^{-1}\cdot 0\\ k_{1}\alpha_{1}+k_{2}\alpha_{2}+k_{3}\alpha_{3}&=0 \end{aligned}

由于α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}nn维线性无关向量,则

k1=0,k2=0,k3=0 k_{1}=0,k_{2}=0,k_{3}=0

因此,Aα1,Aα2,Aα3A \alpha_{1},A \alpha_{2},A \alpha_{3}线性无关

 

例:已知α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关,证明α1+α2,α2+α3,α3+α1\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}线性无关

 

k1(α1+α2)+k2(α2+α3)+k3(α3+α1)=0(k1+k3)α1+(k1+k2)α2+(k2+k3)α3=0 \begin{aligned} k_{1}(\alpha_{1}+\alpha_{2})+k_{2}(\alpha_{2}+\alpha_{3})+k_{3}(\alpha_{3}+\alpha_{1})&=0\\ (k_{1}+k_{3})\alpha_{1}+(k_{1}+k_{2})\alpha_{2}+(k_{2}+k_{3})\alpha_{3}&=0 \end{aligned}

因为α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}线性无关

{k1+k3=0k1+k2=0k2+k3=0(1) \begin{cases} k_{1}+k_{3}=0 \\ k_{1}+k_{2}=0 \\ k_{2}+k_{3}=0 \end{cases}\tag{1}

101110011=20 \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}=2\ne0

齐次方程组(1)(1)只有00解,即必有k1=0,k2=0,k3=0k_{1}=0,k_{2}=0,k_{3}=0,因此α1+α2,α2+α3,α3+α1\alpha_{1}+\alpha_{2},\alpha_{2}+\alpha_{3},\alpha_{3}+\alpha_{1}线性无关

 

极大线性无关组

向量组αi1,αi2,,αir(iir)\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}(i\leq i_{r})是向量组α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}的部分组,且满足

  • αi1,αi2,,αir\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}线性无关

  • 向量组中的任一一个向量ai(iis)a_{i}(i\leq i\leq s)均可由 αi1,αi2,,αir\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}线性表出

 

则称 αi1,αi2,,αir\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}是向量组α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}的一个极大线性无关组

 

同一向量组可以有多个极大线性无关组,其中的成员组成不一样,数量一定一样

 

定理:如果αi1,αi2,,αir\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}αj1,αj2,,αjt\alpha_{j_{1}},\alpha_{j_{2}},\cdots,\alpha_{j_{t}}都是向量组α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}的极大线性无关组,则r=tr=t

证明:

因为αi1,αi2,,αir\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}α1,α2,,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}的极大线性无关组,那么αj1,αj2,,αjt\alpha_{j_{1}},\alpha_{j_{2}},\cdots,\alpha_{j_{t}}可由αi1,αi2,,αir\alpha_{i_{1}},\alpha_{i_{2}},\cdots,\alpha_{i_{r}}线性表示

又因为αj1,αj2,,αjt\alpha_{j_{1}},\alpha_{j_{2}},\cdots,\alpha_{j_{t}}线性无关,则有trt\leq r

同理rtr\leq t,故有r=tr=t

 

例:已知向量组α1=(1,1,0,5)T,α2=(2,0,1,4)T,α3=(3,1,2,3)T,α4=(4,2,3,a)T\alpha_{1}=(1,-1,0,5)^{T},\alpha_{2}=(2,0,1,4)^{T},\alpha_{3}=(3,1,2,3)^{T},\alpha_{4}=(4,2,3,a)^{T},其中aa是参数,求向量组的秩与一个极大线性无关组,并将其他向量用该极大线性无关组线性表示

 

经初等行变换

(α1α2α3α4)=(123410120123543a)(10120123000a20000) \begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \end{pmatrix}=\begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 5 & 4 & 3 & a \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & a-2 \\ 0 & 0 & 0 & 0 \end{pmatrix}

a=2a=2时,秩r(α1α2α3α4)=2r \begin{pmatrix}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4}\end{pmatrix}=2,极大线性无关组是α1,α2\alpha_{1},\alpha_{2}α3=α1+2α2,α4=2α1+3α2\alpha_{3}=-\alpha_{1}+2\alpha_{2},\alpha_{4}=-2\alpha_{1}+3\alpha_{2}

(行最简形式中第一二列、一二行行列式不为00;同理可以使α1,α3\alpha_{1},\alpha_{3},即第一三列、一二行行列式不为00

 

一般选择主元,即行最简每行主元所在的列,为了便于用极大线性无关组表示其他向量

 

α2\alpha\ne2,秩r(α1α2α3α4)=3r \begin{pmatrix}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4}\end{pmatrix}=3,极大线性无关组是α1,α2,α4\alpha_{1},\alpha_{2},\alpha_{4}α3=α1+2α2\alpha_{3}=-\alpha_{1}+2\alpha_{2}

 

矩阵的秩

kk阶子式:AAm×nm\times n的矩阵,任取kk行与kk(km,kn)(k\leq m,k\leq n)位于交叉点的k2k^{2}元素,按AA中的位置次序而得到的kk阶行列式,称为矩阵AAkk阶子式

 

秩:矩阵AA中非00子式的最高阶数称为矩阵AA的秩,记为r(A)r(A)

r(A)=rAr(A)=r\Leftrightarrow A中有rr阶子式不为00而所有r+1r+1阶子式(若有)全为00

r(A)<rAr(A)<r\Leftrightarrow Arr阶子式全为00

r(A)rAr(A)\geq r\Leftrightarrow Arr阶子式全不为00

A0r(A)1A\ne0\Leftrightarrow r(A)\geq1

An阶矩阵,r(A)=nA0AA为n阶矩阵,r(A)=n\Leftrightarrow|A|\ne0\Leftrightarrow A可逆

 

r(121030 05100000600001)=3r\begin{pmatrix}1 & 2 & -1 & 0 & 3 \\ 0  & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 1\end{pmatrix}=3,虽然第四行不全为00,但是所有四阶子式都为00

 

公式

  • r(AT)=r(A)r(A^{T})=r(A)

  • r(kA)=r(A),k0r(kA)=r(A),k\ne0

         r(0EA)=r(A)r(0E-A)=r(A)

         r(AE)=r(EA)r(A-E)=r(E-A)

  • r(A+B)r(A)+r(B)r(A+B)\leq r(A)+r(B)

  • r(AB)min{r(A),r(B)}r(AB)\leq min\{r(A),r(B)\}

         若AA可逆,则r(AB)=r(B),r(BA)=r(B)r(AB)=r(B),r(BA)=r(B)

  • r(ATA)=r(A)r(A^{T}A)=r(A)

  • Am×n,Bn×sA-m\times n,B-n\times sAB=0AB=0,则r(A)+r(B)nr(A)+r(B)\leq n

  • r(AOOB)=r(A)+r(B)r \begin{pmatrix}A & O \\ O & B\end{pmatrix}=r(A)+r(B)

  • ABA\sim B,则r(A)=r(B),r(A+kE)=r(B+kE)r(A)=r(B),r(A+kE)=r(B+kE)

 

例:已知r(A)=3,A=(1111011b23a43517)r(A)=3,A=\begin{pmatrix}1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \\ 3 & 5 & 1 & 7\end{pmatrix},求a,ba,b

 

对矩阵AA作初等变换

A=(1111011b23a43517)(1111011b00a12b00042b) A=\begin{pmatrix}1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \\ 3 & 5 & 1 & 7\end{pmatrix}\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 0 & 0 & a-1 & 2-b \\ 0 & 0 & 0 & 4-2b \end{pmatrix}

{a1=042b0{a1042b=0 \begin{cases} a-1=0 \\ 4-2b\ne0 \end{cases}或\begin{cases} a-1\ne0 \\ 4-2b=0 \end{cases}

a1,b=2a\ne1,b=2a=1,b2a=1,b\ne2