【高等数学基础进阶】二重积分

155 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

二重积分的概念与性质

定义:

Df(x,y)dσ=limλ0i=1nf(xi,yi)Δσi \iint\limits_{D}f(x,y)d \sigma=\lim\limits_{\lambda \to 0}\sum\limits_{i=1}^{n}f(x_{i},y_{i})\Delta \sigma_{i}

 

性质

性质1(不等式):

  1. DD上若f(x,y)g(x,y)f(x,y)\leq g(x,y),则Df(x,y)dσDg(x,y)dσ\iint\limits_{D}f(x,y)d \sigma \leq \iint\limits_{D}g(x,y)d \sigma

  2. 若在DD上有mf(x,y)Mm \leq f(x,y)\leq M,则

         mSDf(x,y)dσMSmS \leq \iint\limits_{D}f(x,y)d \sigma \leq MS

  1. Df(x,y)dσDf(x,y)dσ\left|\iint\limits_{D}f(x,y)d \sigma\right|\leq \iint\limits_{D}\left|f(x,y)\right|d \sigma

 

性质2(中值定理):设函数f(x,y)f(x,y)在闭区域DD上连续,SS为区域DD的面积,则在DD上至少存在一点(ξ,η)(\xi ,\eta ),使得

Df(x,y)dσ=f(ξ,η)S \iint\limits_{D}f(x,y)d \sigma=f(\xi ,\eta )\cdot S

 

二重积分计算

利用直角坐标计算

yyxx

Df(x,y)dσ=abdxϕ2(x)ϕ1(x)f(x,y)dy \iint\limits_{D}f(x,y)d \sigma=\int_{a}^{b}dx \int_{\phi_{2}(x)}^{\phi_{1}(x)}f(x,y)dy

 

xxyy

Df(x,y)dσ=cddyψ2(y)ψ1(y)f(x,y)dx \iint\limits_{D}f(x,y)d \sigma=\int_{c}^{d}dy \int_{\psi _{2}(y)}^{\psi_{1}(y)}f(x,y)dx

 

利用极坐标计算

ρ\rhoθ\theta

Df(x,y)dσ=αβdθϕ1(θ)ϕ2(θ)f(ρcosθ,ρsinθ)ρdρ \iint\limits_{D}f(x,y)d \sigma=\int_{\alpha}^{\beta}d \theta \int_{\phi_{1}(\theta )}^{\phi_{2}(\theta )}f(\rho \cos \theta ,\rho \sin \theta )\rho d \rho

常用于相同θ\theta对应的不同ρ\rho

 

适合用极坐标计算的二重积分的特征

  1. 适合用极坐标计算的被积函数

    f(x2+y2),f(yx),f(xy)f(\sqrt{x^{2}+y^{2}}),f(\frac{y}{x}),f(\frac{x}{y})

  1. 适合用极坐标的积分域

    x2+y2R2r2x2+y2R2x2+y22axx2+y22by\begin{aligned} x^{2}&+y^{2}\leq R^{2}\\r^{2}\leq x^{2}&+y^{2}\leq R^{2}\\x^{2}&+y^{2}\leq 2ax\\x^{2}&+y^{2}\leq 2by\end{aligned}

    如果圆心既不在坐标原点也不在坐标轴,考虑平移+极坐标,即

    xx0=ρsinθ,yy0=ρsinθ令x-x_{0}=\rho \sin \theta ,y-y_{0}=\rho \sin \theta

    则有

    02πdθ0R()ρdρ\int_{0}^{2\pi}d \theta \int_{0}^{R}(\quad )\rho d \rho

 

利用对称性和奇偶性计算

若积分域DD关于yy轴对称,则

Df(x,y)dσ={2Dx0f(x,y)dσf(x,y)=f(x,y)0f(x,y)=f(x,y) \iint\limits_{D}f(x,y)d \sigma=\left\{\begin{aligned}&2\iint\limits_{D_{x \geq 0}}f(x,y)d \sigma& f(-x,y)=f(x,y)\\&0&f(-x,y)=-f(x,y)\end{aligned}\right.

 

若积分域DD关于xx轴对称,则

Df(x,y)dσ={2Dy0f(x,y)dσf(x,y)=f(x,y)0f(x,y)=f(x,y) \iint\limits_{D}f(x,y)d \sigma=\left\{\begin{aligned}&2\iint\limits_{D_{y \geq 0}}f(x,y)d \sigma&f(x,-y)=f(x,y)\\&0&f(x,-y)=-f(x,y)\end{aligned}\right.

 

利用变量对称性计算

DD关于y=xy=x对称,则

Df(x,y)dσ=Df(y,x)dσ \iint\limits_{D}f(x,y)d \sigma=\iint\limits_{D}f(y,x)d \sigma

 

常考题型方法与技巧

累次积分交换次序及计算

例1:交换累次积分01dxx22xf(x,y)dy\begin{aligned} \int_{0}^{1}dx \int_{x^{2}}^{2-x}f(x,y)dy\end{aligned}的次序

 

![[附件/Pasted image 20220913153102.png|200]]

 

 

原式=01dy0yf(x,y)dx+12dy02yf(x,y)dx 原式=\int_{0}^{1}dy \int_{0}^{\sqrt{y}}f(x,y)dx+\int_{1}^{2}dy \int_{0}^{2-y}f(x,y)dx

 

例2:累次积分0π2dθ0cosθf(ρcosθ,ρsinθ)ρdρ\begin{aligned} \int_{0}^{\frac{\pi}{2}}d \theta \int_{0}^{\cos \theta }f(\rho \cos \theta ,\rho \sin \theta )\rho d \rho\end{aligned}化为直角坐标

 

ρ=cosθρ2=ρcosθx2+y2=xρ=0θ(0,π2) \begin{aligned} \rho&=\cos \theta \Rightarrow \rho^{2}=\rho \cos \theta \Rightarrow x^{2}+y^{2}=x\\ \rho&=0\\ \theta &\in (0, \frac{\pi}{2}) \end{aligned}

![[附件/Pasted image 20220913155617.png|300]]

 

因此有

原式=012dy1214y212+14y2f(x,y)dy原式=01dx0xx2f(x,y)dx \begin{aligned} 原式&=\int_{0}^{\frac{1}{2}}dy \int_{\frac{1}{2}- \sqrt{\frac{1}{4}-y^{2}}}^{\frac{1}{2}+\sqrt{\frac{1}{4}-y^{2}}}f(x,y)dy\\ 原式&=\int_{0}^{1}dx \int_{0}^{\sqrt{x-x^{2}}}f(x,y)dx \end{aligned}

 

不同坐标系累次积分相互转化,先画区域,然后重新定上下限即可

 

例3:积分02dx02xx2x2+y2dy\begin{aligned} \int_{0}^{2}dx \int_{0}^{\sqrt{2x-x^{2}}}\sqrt{x^{2}+y^{2}}dy\end{aligned}的值等于()

 

累次积分不好算,考虑交换积分次序,换坐标系

 

原式=0π2dθ02cosθρρdρ=830π2cos3θdθ=8323=169 \begin{aligned} 原式&=\int_{0}^{\frac{\pi}{2}}d \theta \int_{0}^{2 \cos \theta }\rho \cdot \rho d \rho\\ &=\frac{8}{3}\int_{0}^{\frac{\pi}{2}}\cos ^{3}\theta d \theta \\ &=\frac{8}{3} \frac{2}{3}=\frac{16}{9} \end{aligned}

 

二重积分计算

例4:设D:{(x,y)x2+y21}D:\left\{(x,y)|x^{2}+y^{2} \leq 1\right\},则D(x2y)dxdy=()\begin{aligned} \iint\limits_{D}(x^{2}-y)dxdy=()\end{aligned}

 

原式=Dx2dxdy=Dy2dxdy=12D(x2+y2)dxdy=1202πdθ01ρ2ρdρ=122π14=π4 \begin{aligned} 原式&=\iint\limits_{D}x^{2}dxdy\\ &=\iint\limits_{D}y^{2}dxdy\\ &=\frac{1}{2}\iint\limits_{D}(x^{2}+y^{2})dxdy\\ &=\frac{1}{2}\int_{0}^{2\pi}d \theta \int_{0}^{1}\rho^{2}\rho d \rho\\ &=\frac{1}{2}\cdot 2\pi \cdot \frac{1}{4}= \frac{\pi}{4} \end{aligned}

 

对称性常用于平方项化极坐标,本题就是一个例子,还有类似

D:{(x,y)x2+y21}D:\left\{(x,y)|x^{2}+y^{2} \leq 1\right\},则

D(2x3y)2dxdy=D(4x212xy+9y2)dxdy=D(4x2+9y2)dxdy=D(4y2+9x2)dxdy=132D(x2+y2)dxdy=134π\begin{aligned} \iint\limits_{D}(2x-3y)^{2}dxdy&=\iint\limits_{D}(4x^{2}-12xy+9y^{2})dxdy\\&=\iint\limits_{D}(4x^{2}+9y^{2})dxdy\\&=\iint\limits_{D}(4y^{2}+9x^{2})dxdy\\&=\frac{13}{2}\iint\limits_{D}(x^{2}+y^{2})dxdy\\&=\frac{13}{4}\pi\end{aligned}

 

例5:设DDxOyxOy平面上以(1,1),(1,1),(1,1)(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1D_{1}DD在第一象限的部分,说明D(xy+cosxsiny)dxdy=2D1cosxsinydxdy\begin{aligned} \iint\limits_{D}(xy+\cos x \sin y )dxdy=2 \iint\limits_{D_{1}}\cos x \sin y dxdy\end{aligned}

 

将该直角三角形沿y=xy=-x划分成两部分,显然y=xy=-x以上关于yy轴对称,y=xy=-x以下关于xx轴对称,因此有

原式=Dcosxsinydxdy=2D1cosxsinydxdy \begin{aligned} 原式&=\iint\limits_{D}\cos x \sin ydxdy\\ &=2 \iint\limits_{D_{1}}\cos x \sin y dxdy \end{aligned}

 

例6:设平面区域DD由曲线y=3(1x2)y=\sqrt{3(1-x^{2})}与直线y=3xy=\sqrt{3}xyy轴围成,计算二重积分Dx2dxdy=()\begin{aligned} \iint\limits_{D}x^{2}dxdy=()\end{aligned}

 

原式=012dx3x3(1x2)x2dy=012x2[3(1x2)3x]dx=3012x21x2dx3012x3dx=3012x21x2dx316=x=sint30π4sin2tcos2tdt316=340π4(sin2t)2dt316=2t=u380π2sin2udu316=332π316 \begin{aligned} 原式&=\int_{0}^{\frac{1}{\sqrt{2}}}dx \int_{\sqrt{3}x}^{\sqrt{3(1-x^{2})}}x^{2}dy\\ &=\int_{0}^{\frac{1}{\sqrt{2}}}x^{2}[\sqrt{3(1-x^{2})}-\sqrt{3}x] dx\\ &=\sqrt{3}\int_{0}^{\frac{1}{\sqrt{2}}}x^{2}\sqrt{1-x^{2}}dx-\sqrt{3}\int_{0}^{\frac{1}{\sqrt{2}}}x^{3}dx\\ &=\sqrt{3}\int_{0}^{\frac{1}{\sqrt{2}}}x^{2}\sqrt{1-x^{2}}dx - \frac{\sqrt{3}}{16}\\ &\overset{x=\sin t}{=}\sqrt{3}\int_{0}^{\frac{\pi}{4}}\sin ^{2}t \cos ^{2}tdt- \frac{\sqrt{3}}{16}\\ &=\frac{\sqrt{3}}{4}\int_{0}^{\frac{\pi}{4}}(\sin 2t)^{2}dt - \frac{\sqrt{3}}{16}\\ &\overset{2t =u}{=}\frac{\sqrt{3}}{8}\int_{0}^{\frac{\pi}{2}}\sin ^{2}udu-\frac{\sqrt{3}}{16}\\ &=\frac{\sqrt{3}}{32}\pi-\frac{\sqrt{3}}{16} \end{aligned}

 

例7:已知平面域D={(x,y)x2+y22y}D=\left\{(x,y)|x^{2}+y^{2}\leq 2y\right\}计算二重积分I=D(x+1)2dxdy\begin{aligned} I=\iint\limits_{D}(x+1)^{2}dxdy\end{aligned}

 

I=D(x2+2x+1)dxdy=D(x2+1)dxdy=20π2dθ02sin θρ2cos2θρdρ+π此处dθ的上限不用π而用π2用的是对称性而且π2更方便用点火公式x2+y22y=0ρ2=2ρsinθρ=2sinθ=80π2sin4θcos2θdθ+π=80π2sin4θ(1sin2θ)dθ+π=8(316π1596π)+π=54π \begin{aligned} I&=\iint\limits_{D}(x^{2}+2x+1)dxdy\\ &=\iint\limits_{D}(x^{2}+1)dxdy\\ &=2\int_{0}^{\frac{\pi}{2}}d \theta \int_{0}^{2\sin  \theta }\rho^{2}\cos ^{2}\theta \rho d \rho+\pi\\ &此处d \theta 的上限不用\pi而用 \frac{\pi}{2}用的是对称性\\ &而且 \frac{\pi}{2}更方便用点火公式\\ &x^{2}+y^{2}-2y=0\Rightarrow \rho^{2}=2 \rho \sin \theta \Rightarrow \rho=2\sin \theta \\ &=8 \int_{0}^{\frac{\pi}{2}}\sin ^{4}\theta \cos ^{2}\theta d \theta +\pi\\ &=8\int_{0}^{\frac{\pi}{2}}\sin ^{4}\theta (1-\sin ^{2}\theta )d \theta +\pi\\ &=8\left(\frac{3}{16}\pi- \frac{15}{96}\pi\right)+\pi\\ &=\frac{5}{4}\pi \end{aligned}

 

例8:计算二重积分Dx2+y21dσ\begin{aligned} \iint\limits_{D}\left|x^{2}+y^{2}-1\right|d \sigma\end{aligned},其中D={(x,y)0x1,0y1}D=\left\{(x,y)|0\leq x \leq 1,0\leq y \leq 1\right\}

 

一元带括号的积分是根据正负分区间,多元也类似。多元分区域,去绝对值,求积分的时候常用减法,因为往往分出来的两块,一块好算,一块不好算,不好算的可以用整体-好算的,即原式变为2×好算的+整体

 

![[附件/Pasted image 20220913174341.png|250]]

 

如图,将DD分成D1D_{1}D2D_{2}两部分

原式=D1(1x2y2)dσ+D2(x2+y21)dσ=D1(1x2y2)dσ+[D(x2+y21)dσD1(x2+y21)dσ]=2D1(1x2y2)dσ+D(x2+y21)dσ=20π2dθ01(1ρ2)ρdρ+01dx01(x2+y21)dy=π413 \begin{aligned} 原式&=\iint\limits_{D_{1}}(1-x^{2}-y^{2})d \sigma+\iint\limits_{D_{2}}(x^{2}+y^{2}-1)d \sigma\\ &=\iint\limits_{D_{1}}(1-x^{2}-y^{2})d \sigma+[\iint\limits_{D}(x^{2}+y^{2}-1)d \sigma-\iint\limits_{D_{1}}(x^{2}+y^{2}-1)d \sigma ]\\ &=2\iint\limits_{D_{1}}(1-x^{2}-y^{2})d \sigma+\iint\limits_{D}(x^{2}+y^{2}-1)d \sigma\\ &=2\int_{0}^{\frac{\pi}{2}}d \theta \int_{0}^{1}(1-\rho^{2})\rho d \rho+\int_{0}^{1}dx \int_{0}^{1}(x^{2}+y^{2}-1)dy\\ &= \frac{\pi}{4}- \frac{1}{3} \end{aligned}

 

例8:设平面域D={(x,y)1x2+y24,x0,y0}D=\left\{(x,y)|1\leq x^{2}+y^{2}\leq 4,x \geq 0,y \geq 0\right\},计算Dxsin(πx2+y2)x+ydxdy\begin{aligned} \iint\limits_{D}\frac{x \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y}dxdy\end{aligned}

 

观察被积函数显然用直角坐标和极坐标都不好做,因此想其他方法

 

Dxsin(πx2+y2)x+ydxdy=Dysin(πx2+y2)x+ydxdy=12[Dysin(πx2+y2)x+ydxdy+Dysin(πx2+y2)x+ydxdy]=12Dsin(πx2+y2)dxdy=120π2dθ12sin(πρ)ρdρ=34 \begin{aligned} \iint\limits_{D}\frac{x \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y }dxdy&=\iint\limits_{D}\frac{y \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y }dxdy\\ &=\frac{1}{2}\left[\iint\limits_{D}\frac{y \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y }dxdy+\iint\limits_{D}\frac{y \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y }dxdy\right]\\ &=\frac{1}{2}\iint\limits_{D}\sin (\pi \sqrt{x^{2}+y^{2}})dxdy\\ &=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}d \theta \int_{1}^{2}\sin (\pi \rho)\rho d \rho\\ &=-\frac{3}{4} \end{aligned}

 

也可以用

Dxsin(πx2+y2)x+ydxdy=0π2cosθcosθ+sinθdθ12ρsin(πρ)dρ由于0π2cosθcosθ+sinθdθ=0π2sinθcosθ+sinθdθ=120π2cosθ+sinθcosθ+sinθdθ=π412ρsin(πρ)dρ=1π(ρcosπρ+1πsinπρ)12=3πDxsin(πx2+y2)x+ydxdy=34 \begin{aligned} \iint\limits_{D}\frac{x \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y}dxdy&=\int_{0}^{\frac{\pi}{2}}\frac{\cos \theta }{\cos \theta +\sin \theta }d \theta \cdot \int_{1}^{2}\rho \sin (\pi \rho)d \rho\\ 由于\int_{0}^{\frac{\pi}{2}}\frac{\cos \theta }{\cos \theta +\sin \theta }d \theta &=\int_{0}^{\frac{\pi}{2}}\frac{\sin \theta }{\cos \theta +\sin \theta }d \theta \\ &=\frac{1}{2}\int_{0}^{\frac{\pi}{2} }\frac{\cos \theta +\sin \theta }{\cos \theta +\sin \theta }d \theta \\ &=\frac{\pi}{4}\\ \int_{1}^{2}\rho \sin (\pi \rho)d \rho&=\frac{1}{\pi}(-\rho \cos \pi \rho+ \frac{1}{\pi} \sin \pi \rho)\Big|_{1}^{2}\\ &=- \frac{3}{\pi}\\ 故\iint\limits_{D}\frac{x \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y}dxdy&=- \frac{3}{4} \end{aligned}

 

这里用到了区间再现公式,即

abf(x)dx=x=a+btabf(a+bt)dt\int_{a}^{b}f(x)dx \overset{x=a+b-t}{=}\int_{a}^{b}f(a+b-t)dt

观察左右两式,显然积分区域不变

 

也可以不用公式,用正常思路

Dxsin(πx2+y2)x+ydxdy=0π2cosθcosθ+sinθdθ12ρsin(πρ)dρ \iint\limits_{D}\frac{x \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y}dxdy=\int_{0}^{\frac{\pi}{2}}\frac{\cos \theta }{\cos \theta +\sin \theta }d \theta \cdot \int_{1}^{2}\rho \sin (\pi \rho)d \rho

显然满足R(sinθ,cosθ)=R(sinθ,cosθ)R(-\sin \theta ,-\cos \theta )=-R(\sin \theta ,\cos \theta ),因此,令u=tanθu=\tan \theta

0π2cosθcosθ+sinθdθ=0π2cos2θ1+tanθdtanθ=0π21(tan2θ+1)(1+tanθ)dtanθ=u=tanθ0+1(1+u)(1+u2)du=0+[A1+u+Bu+C1+u2]du{A+B=0B+C=0A+C=1解得{A=12B=12C=12=120+11+udu+120+u+1u2+1du=12ln(1+u)u=+120+12d(u2+1)duu2+1=12ln(1+u)u=+14ln(u2+1)u=++12arctanuu=+=14ln(u2+2u+1u2+1)u=++π4=14ln(1+2uu2+1)u=++π4=0+π4=π4 \begin{aligned} \int_{0}^{\frac{\pi}{2}}\frac{\cos \theta }{\cos \theta +\sin \theta }d \theta&=\int_{0}^{\frac{\pi}{2}}\frac{\cos ^{2}\theta }{1+\tan \theta }d \tan \theta \\ &=\int_{0}^{\frac{\pi}{2}}\frac{1}{(\tan ^{2}\theta +1)(1+ \tan \theta )}d \tan \theta \\ &\overset{u=\tan \theta }{=}\int_{0}^{+\infty}\frac{1}{(1+u)(1+u^{2})}du\\ &=\int_{0}^{+\infty} \left[\frac{A}{1+u}+ \frac{Bu+C}{1+u^{2}}\right]du\\ &\Rightarrow \left\{\begin{aligned}&A+B=0\\&B+C=0\\&A+C=1\end{aligned}\right.解得\left\{\begin{aligned}&A = \frac{1}{2}\\&B =- \frac{1}{2}\\&C = \frac{1}{2}\end{aligned}\right.\\ &=\frac{1}{2}\int_{0}^{+\infty} \frac{1}{1+u}du+ \frac{1}{2}\int_{0}^{+\infty}\frac{-u+1}{u^{2}+1}du\\ &=\frac{1}{2}\ln (1+u)\Big|_{u=+\infty}^{}- \frac{1}{2}\int_{0 }^{+\infty}\frac{\frac{1}{2}d(u^{2}+1)-du}{u^{2}+1}\\ &=\frac{1}{2}\ln (1+u)\Big|_{u=+\infty}^{}- \frac{1}{4}\ln (u^{2}+1)\Big|_{u=+\infty}^{}+ \frac{1}{2}\arctan u \Big|_{u=+\infty}^{}\\ &=\frac{1}{4}\ln \left(\frac{u^{2}+2u+1}{u^{2}+1}\right)\Big|_{u=+\infty}^{}+ \frac{\pi}{4}\\ &=\frac{1}{4}\ln \left(1+ \frac{2u}{u^{2}+1}\right)\Big|_{u=+\infty}^{}+\frac{\pi}{4}\\ &=0+\frac{\pi}{4}=\frac{\pi}{4} \end{aligned}

后面计算同上

 

例9:设DkD_{k}是圆域D={(x,y)x2+y21}D=\left\{(x,y)|x^{2}+y^{2}\leq 1\right\}在第kk象限的部分,记 Ik=Dk(yx)dxdy(k=1,2,3,4)\begin{aligned} I_{k}=\iint\limits_{D_{k}}(y-x)dxdy(k=1,2,3,4)\end{aligned},说明IkI_{k}的正负

 

由于在第二象限yx>0y-x>0,因此I2>0I_{2}>0,同理I4<0I_{4}<0

对于I1I_{1},有

I1=D1(yx)dσ=D1(xy)dσD1(yx)dσ=D1(yx)dσ=0 \begin{aligned} I_{1}&=\iint\limits_{D_{1}}(y-x)d \sigma\\ &=\iint\limits_{D_{1}}(x-y) d \sigma\\ \iint\limits_{D_{1}}(y-x)d \sigma&=-\iint\limits_{D_{1}}(y-x)d \sigma=0 \end{aligned}

同理I3=0I_{3}=0

 

例10:已知平面域D={(x,y)x+yπ2}D=\left\{(x,y)||x|+|y|\leq \frac{\pi}{2}\right\},记I1=Dx2+y2dσ,I2=Dsinx2+y2dσ,I3=D(1+cosx2+y2)dσ\begin{aligned} I_{1}=\iint\limits_{D}\sqrt{x^{2}+y^{2}}d \sigma,I_{2}=\iint\limits_{D}\sin \sqrt{x^{2}+y^{2}}d \sigma,I_{3}=\iint\limits_{D}(1+\cos \sqrt{x^{2}+y^{2}})d \sigma\end{aligned},说明I3<I2<I1I_{3}<I_{2}<I_{1}

 

由于被积区域相同,因此函数值大则II大,令x2+y2=r\sqrt{x^{2}+y^{2}}=r显然有

r>sinrsin2r=1cos2r1cosr r> \sin r \geq \sin ^{2}r=1-\cos ^{2}r \geq 1-\cos r

 

画个图也行,不难