【高等数学基础进阶】多元函数微分学-多元函数微分法

111 阅读5分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

 

一、复合函数微分法

定理:设u=u(x,y)u=u(x,y)v=v(x,y)v=v(x,y)在点(x,y)(x,y)具有对xx及对yy的偏导数,函数z=f(u,v)z=f(u,v)在对应点(u,v)(u,v)具有连续偏导数,那么复合函数z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)]在点(x,y)(x,y)的两个偏导数都存在,且有

dzdx=zuux+zvvx,dzdy=zuuy+zvvy \begin{aligned}\frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x},\frac{dz}{dy}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\end{aligned}

 


graph TD

A(z) -- 这里 --- B(u)

A --- C(v)

B -- 这里 --- D((x))

B --- E(y)

C --- F((x)) & G(y)

 

例如该式z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)],画出树形图,做对xx的偏导,树形图底部有几个xx,就有几项(最底下两个圆的xx);连接到某个xx有几条线,该式就有几个导数(标有这里的两条线表示该项有两个导数组成,即dzdydudx\begin{aligned} \frac{dz}{dy} \frac{du}{dx}\end{aligned}

 

全微分形式的不变性

设函数z=f(u,v),u=u(x,y),v=v(x,y)z=f(u,v),u=u(x,y),v=v(x,y)都有连续的一阶偏导数,则复合函数z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)]的全微分

dz=zxdx+zyy=(zuux+zvvx)dx+(zuuy+zvvy)dy=zu(uxdx+uydy)+zv(vxdx+vydy)=zudu+zvdv \begin{aligned} dz&=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}y\\ &=\left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right)dx+\left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\right)dy\\ &=\frac{\partial z}{\partial u}\left(\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy\right)+\frac{\partial z}{\partial v}\left(\frac{\partial v}{\partial x}dx+\frac{\partial v}{\partial y}dy\right)\\ &=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv \end{aligned}

 

二、隐函数微分法

由方程F(x,y)=0F(x,y)=0确定的隐函数y=y(x)y=y(x)

y=FxFy y'=-\frac{F'_{x}}{F'_{y}}

 

由方程F(x,y,z)=0F(x,y,z)=0确定的隐函数z=z(x,y)z=z(x,y)

F(x,y,z)F(x,y,z)在点P(x0,y0,z0)P(x_{0},y_{0},z_{0})的某一邻域内有连续偏导数,且F(x0,y0,z0)=0,Fz(x0,y0,z0)0F(x_{0},y_{0},z_{0})=0,F'_{z}(x_{0},y_{0},z_{0})\ne 0,则方程F(x,y,z)=0F(x,y,z)=0在点(x0,y0,z0)(x_{0},y_{0},z_{0})的某邻域可唯一确定一个有连续偏导数的函数z=z(x,y)z=z(x,y),并有

zx=FxFz,zy=FyFz \frac{\partial z}{\partial x}=-\frac{F'_{x}}{F'_{z}},\frac{\partial z}{\partial y}=-\frac{F'_{y}}{F'_{z}}

 

如果Fz(x0,y0,z0)0F'_{z}(x_{0},y_{0},z_{0})\ne 0,那么zz就是x,yx,y的函数,如果Fy(x0,y0,z0)0F'_{y}(x_{0},y_{0},z_{0})\ne 0。那么yy就是x,zx,z的函数,其余同理

这个很重要,这里先不解释,要看的话直接看最后

 

常考题型与典型例题

复合函数的偏导数与全微分

例1:设函数F(x,y)=0xysint1+t2dt\begin{aligned} F(x,y)=\int_{0}^{xy}\frac{\sin t}{1+t^{2}}dt\end{aligned},则Fx=()\begin{aligned} \frac{\partial F}{\partial x}=()\end{aligned}

 

Fx=ysinxy1+x2y22Fx2=y2cos(xy)(1+x2y2)2xy3sinxy(1+x2y2)22Fx2x=0y=2=4 \begin{aligned} \frac{\partial F}{\partial x}&=\frac{y \sin xy}{1+x^{2}y^{2}}\\ \frac{\partial ^{2}F}{\partial x^{2}}&=\frac{y^{2}\cos (xy)(1+x^{2}y^{2})-2xy^{3}\sin xy}{(1+x^{2}y^{2})^{2}}\\ \frac{\partial ^{2}F}{\partial x^{2}}\Big|_{\substack{x=0\\y=2}}^{}&=4 \end{aligned}

 

由于是对xx偏导,因此可以将yy先带进去

 

F(x,2)=02xsint1+t2dtFx=2sin2x1+4x22Fx2x=0y=2=Fxx(0,2)=limx02sin2xx(1+4x2)=4 \begin{aligned} F(x,2)&=\int_{0}^{2x}\frac{\sin t}{1+t^{2}}dt\\ \frac{\partial F}{\partial x}&=\frac{2\sin 2x}{1+4x^{2}}\\ \frac{\partial^{2} F}{\partial x^{2}}\Big|_{\substack{x=0\\ y=2}}^{}&=F_{xx}(0,2)=\lim\limits_{x\to0}\frac{2\sin 2x}{x(1+4x^{2})}=4 \end{aligned}

 

这里设Fx=ϕ(x)\begin{aligned} \frac{\partial F}{\partial x}=\phi (x)\end{aligned},由于ϕ(x)=0\phi (x)=0,因此

2Fx2x=0y=2=ϕ(x)x=0=ϕ(0)=limx0ϕ(x)ϕ(0)x=limx0ϕ(x)x\begin{aligned} \frac{\partial^{2} F}{\partial x^{2}}\Big|_{\substack{x=0\\ y=2}}^{}&=\phi (x)'\Big|_{x=0}^{}=\phi '(0)\\&=\lim\limits_{x\to0}\frac{\phi (x)-\phi (0)}{x}=\lim\limits_{x\to0}\frac{\phi (x)}{x}\end{aligned}

 

例2:设z=(1+xy)xy\begin{aligned} z=\left(1+ \frac{x}{y}\right)^{\frac{x}{y}}\end{aligned},则dz(1,3)=()dz \Big|_{(1,3)}^{}=()

 

dz(1,1)=zx(1,1)dx+zy(1,1)dyzx(x,1)=d(1+x)xdx=exln(1+x)(ln(1+x)+x1+x)zx(1,1)=1+2ln2zy(1,y)=d(1+1y)1ydy=u=1yd(1+u)udududyzy(1,1)=(1+2ln2)dudy=(1+2ln2)(1y2)=12ln2dz(1,1)=(1+2ln2)dx(1+2ln2)dy \begin{aligned} dz \Big|_{(1,1)}^{}&=z_{x}(1,1)dx+z_{y}(1,1)dy\\ z_{x}(x,1)&=\frac{d(1+ x)^{x}}{dx}=e^{x \ln (1+x)}\left(\ln (1+x)+ \frac{x}{1+x}\right)\\ z_{x}(1,1)&=1+2\ln 2\\ z_{y}(1,y)&=\frac{d(1+ \frac{1}{y})^{\frac{1}{y}}}{dy}\overset{令u=\frac{1}{y}}{=}\frac{d(1+u)^{u}}{du} \frac{du}{dy}\\ z_{y}(1,1)&=(1+2 \ln 2)\cdot \frac{du}{dy}=(1+2 \ln 2)\cdot (- \frac{1}{y^{2}})=-1-2\ln 2\\ dz \Big|_{(1,1)}^{}&=(1+2\ln 2)dx-(1+2\ln 2)dy \end{aligned}

 

例3:设函数f(u,v)f(u,v)具有22阶连续导数y=f(ex,cosx)y=f(e^{x},\cos x),求dydxx=0,d2ydx2x=0\begin{aligned} \frac{dy}{dx}\Big|_{x=0}^{},\frac{d^{2}y}{dx^{2}}\Big|_{x=0}^{}\end{aligned}

 


graph TD

A(y) --- B(u)

A --- C(v)

B --- D(x)

C --- F(x)

 

dydx=f1ex+f2(sinx)dydxx=0=f1(1,1)d2ydx2=exf1+exf11ex+exf12(sinx)cosxf2sinxf21(sinx)sinxf21exd2ydx2x=0=f1(1,1)+f11(1,1)f2(1,1) \begin{aligned} \frac{dy}{dx}&=f_{1}e^{x}+f_{2}(-\sin x)\\ \frac{dy}{dx}\Big|_{x=0}^{}&=f_{1}(1,1)\\ \frac{d^{2}y}{dx^{2}}&=e^{x}f_{1}+e^{x}f_{11}e^{x}+e^{x}f_{12}(-\sin x)-\cos x f_{2}-\sin x f_{21}(-\sin x)-\sin x f_{21}e^{x}\\ \frac{d^{2}y}{dx^{2}}\Big|_{x=0}^{}&=f_{1}(1,1)+f_{11}(1,1)-f_{2}(1,1) \end{aligned}

 

一定注意f1f_{1}仍然是f1(e2,cosx)f_{1}(e^{2},\cos x),因此对xx求导,也是两项

 

例4:设函数z=f(xy,yg(x))z=f(xy,yg(x)),其中函数ff具有二阶连续偏导数,函数g(x)g(x)可导且在x=1x=1处取得极值g(1)=1g(1)=1,求2zxyx=1y=1=()\begin{aligned} \frac{\partial^{2} z}{\partial x \partial y}\Big|_{\substack{x=1\\ y=1}}^{}=()\end{aligned}

 


graph TD

A(z) --- xy

xy --- 1(x)

xy --- 2(y)

A --- 3("yg(x)")

3 --- y

3 --- 4("g(x)")

4 --- x

 

zx=yf1+yg(x)f22zxy=f1+(xf11+g(x)f12)+g(x)f2+yg(x)(xf21+g(x)f22)2zxyx=1y=1=f1(1,1)+f11(1,1)+f12(1,1) \begin{aligned} \frac{\partial z}{\partial x}&=y f_{1}+yg'(x)f_{2}\\ \frac{\partial^{2} z}{\partial x \partial y}&=f_{1}+(x f_{11}+g(x)f_{12})+g'(x)f_{2}+yg'(x)(xf_{21}+g(x)f_{22})\\ \frac{\partial^{2} z}{\partial x \partial y}\Big|_{\substack{x=1\\ y=1}}^{}&=f_{1}(1,1)+f_{11}(1,1)+f_{12}(1,1) \end{aligned}

 

也可以用先带后求

 

zx=yf1+yg(x)f2zxx=1g(1)=1g(1)=0=yf1(y,y)2zxy=yf1(y,y)y=f1+y(f11+f12)2zxyx=1y=1=f1(1,1)+f11(1,1)+f12(1,1) \begin{aligned} \frac{\partial z}{\partial x}&=y f_{1}+yg'(x)f_{2}\\ \frac{\partial z}{\partial x}\Big|_{\substack {x=1\\g(1)=1\\g'(1)=0}}^{}&=y f_{1}(y,y)\\ \frac{\partial^{2} z}{\partial x \partial y}&=\frac{\partial y f_{1}(y,y)}{\partial y}=f_{1}+y(f_{11}+f_{12})\\ \frac{\partial^{2} z}{\partial x \partial y}\Big|_{\substack{x=1\\ y=1}}^{}&=f_{1}(1,1)+f_{11}(1,1)+f_{12}(1,1) \end{aligned}

 

隐函数的偏导数与全微分

例5:若函数z=z(x,y)z=z(x,y)由方程ex+2y+3z+xyz=1e^{x+2y+3z}+xyz=1确定,则dz(0,0)=()dz \Big|_{(0,0)}^{}=()

 

x=0,y=0x=0,y=0,知z=0z=0。方程ex+2y+3z+xyz=1e^{x+2y+3z}+xyz=1两端微分,得

d(ex+2y+3z+xyz)=d1dex+2y+3z+dxyz=0ex+2y+3zd(x+2y+3z)+dxyz=0ex+2y+3z(dx+2dy+3dz)+yzdx+xzdy+xydz=0 \begin{aligned} d(e^{x+2y+3z}+xyz)&=d1\\ de^{x+2y+3z}+dxyz&=0\\ e^{x+2y+3z}d(x+2y+3z)+dxyz&=0\\ e^{x+2y+3z}(dx+2dy+3dz)+yzdx+xzdy+xydz&=0 \end{aligned}

x=0,y=0,z=0x=0,y=0,z=0代入上式得

dx+2dy+3dz=0 dx+2dy+3dz=0

dz(0,0)=13(dx+2dy) dz \Big|_{(0,0)}^{}=- \frac{1}{3}(dx+2dy)

 

用该方法显然需要微分好求,如果第二项是xyz1+x2+y2+z2\begin{aligned} \frac{xyz}{\sqrt{1+x^{2}+y^{2}+z^{2} }}\end{aligned},显然该方法并不好

补充微分四则运算

d(f(x)+g(x))=df(x)+dg(x)d(f(x)g(x))=df(x)dg(x)d(f(x)×g(x))=g(x)×df(x)+f(x)×dg(x)df(x)g(x)=g(x)×df(x)f(x)×dg(x)g(x)2\begin{aligned} d(f(x)+g(x))&=df(x)+dg(x)\\d(f(x)-g(x))&=df(x)-dg(x)\\d(f(x) \times g(x))&=g(x) \times df(x)+f(x) \times d g(x)\\d \frac{f(x)}{g(x)}&=\frac{g(x) \times df(x)-f(x) \times dg(x)}{g(x)^{2}}\end{aligned}

有点类似于导数的四则运算

 

也可以分别求出zx(0,0),zy(0,0)z_{x}(0,0),z_{y}(0,0)

 

这里只是对xx求一次偏导,显然yy可以先代入

 

x=0,y=0x=0,y=0z=0z=0

dz(0,0)=zx(0,0)dx+zy(0,0)dy dz \Big|_{(0,0)}^{}=z_{x}(0,0)dx+z_{y}(0,0)dy

ex+2y+3z+xyz=1e^{x+2y+3z}+xyz=1中令y=0y=0得,ex+3z=1e^{x+3z}=1,两边对xx求导得

ex+3z(1+3zx)=0zx(0,0)=13 \begin{aligned} e^{x+3z}(1+3z_{x})&=0\\ z_{x}(0,0)&=- \frac{1}{3} \end{aligned}

同理可得zy(0,0)=23z_{y}(0,0)= - \frac{2}{3}

dz(0,0)=13(dx+2dy) dz \Big|_{(0,0)}^{}=- \frac{1}{3}(dx+2dy)

 

例6:已知u+eu=xyu+e^{u}=xy,求ux,uy,2uxy\begin{aligned} \frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^{2} u}{\partial x \partial y}\end{aligned}

 

求一阶偏导,一般有三种方法

 

两端同时对xx求偏导

(1+eu)ux=yux=y1+eu同理uy=x1+eu \begin{aligned} (1+e^{u})\frac{\partial u}{\partial x}&=y\\ \frac{\partial u}{\partial x}&=\frac{y}{1+e^{u}}\\ 同理\quad \frac{\partial u}{\partial y}&=\frac{x}{1+e^{u}} \end{aligned}

 

注意此处由于是对xx求偏导,显然uux,yx,y的函数,因此uu不能看做常数

 

也可用定义法

ux=FxFu=y1+eu \frac{\partial u}{\partial x}=-\frac{F_{x}}{F_{u}}=\frac{y}{1+e^{u}}

 

这里根据定义法要求,需要将所有式子移到一边,即

F(x,y,u)=u+euxyF(x,y,u)=u+e^{u}-xy

对任何一个变量求导,其他变量看做常数,例如

Fx=y,Fy=x,Fu=1+euF_{x}=-y,F_{y}=-x,F_{u}=1+e^{u}

 

也可两边同时求微分,主要应用微分形式不变性

(1+eu)du=ydx+xdydu=y1+eudx+x1+eudy (1+e^{u})du=ydx+xdy \Rightarrow du=\frac{y}{1+e^{u}}dx+ \frac{x}{1+e^{u}}dy

 

个人理解,这里微分形式不变性,是指等式两边同时取微分,计算时看等式一边出现了哪些变量,则就有dd哪些变量,然后前面的式子就是对该侧等式对该变量的微分。例如本题,两边同时取微分

d(u+eu)=dxyd(u+e^{u})=dxy

看等式左边,出现了uu,因此,就有dudu,然后左边的式子对uu求偏导,即

1+eudu=dxy1+e^{u}du=dxy

看等式右边,出现了x,yx,y,因此,就有dx,dydx,dy,然后右边的式子对xx求偏导,写在dxdx前,对yy求偏导,写在dydy

(1+eu)du=ydx+xdy(1+e^{u})du=ydx+xdy

整理可得

du=y1+eudx+x1+eudydu=\frac{y}{1+e^{u}}dx+ \frac{x}{1+e^{u}}dy

 

2uxy=(1+eu)euuyy(1+eu)2=11+euxyeu(1+eu)3 \frac{\partial^{2} u}{\partial x \partial y}=\frac{(1+e^{u})-e^{u}\frac{\partial u}{\partial y}y}{(1+e^{u})^{2}}=\frac{1}{1+e^{u}}- \frac{xye^{u}}{(1+e^{u})^{3}}

 

例7:设函数z=z(x,y)z=z(x,y)由方程F(yx,zx)=0\begin{aligned} F\left(\frac{y}{x},\frac{z}{x}\right)=0\end{aligned}确定,其中FF为可微函数,且F20F_{2}'\ne 0,则xzx+yzy=()\begin{aligned} x \frac{\partial z}{\partial x}+y \frac{\partial z }{\partial y}=()\end{aligned}

 

该类题一般用定义法求偏导比较简单

例如对xxF(yx,zx)\begin{aligned} F\left(\frac{y}{x},\frac{z}{x}\right)\end{aligned}有三个位置都需要求导,因此无论是两边同时求导还是求微分,都需要对着三项求导,会比较麻烦

 

zx=yx2F1zx2F21xF2zy=1xF11xF2xzx+yzy=yx2F1zx2F21xF21xF11xF2=z \begin{aligned} \frac{\partial z}{\partial x}&=-\frac{- \frac{y}{x^{2}}F_{1}- \frac{z}{x^{2}}F_{2}}{\frac{1}{x}F_{2}}\\ \frac{\partial z}{\partial y}&=-\frac{\frac{1}{x}F_{1}}{\frac{1}{x}F_{2}}\\ x \frac{\partial z}{\partial x}+y \frac{\partial z }{\partial y}&=-\frac{- \frac{y}{x^{2}}F_{1}- \frac{z}{x^{2}}F_{2}}{\frac{1}{x}F_{2}}-\frac{\frac{1}{x}F_{1}}{\frac{1}{x}F_{2}}=z \end{aligned}

 

例8:设u=f(x,y,z)u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)y=y(x)z=z(x)z=z(x)分别由下列两式确定:exyxy=2e^{xy}-xy=2ex=0xzsinttdt\begin{aligned} e^{x}=\int_{0}^{x-z}\frac{\sin t}{t}dt\end{aligned},求dudx\begin{aligned} \frac{du}{dx}\end{aligned}

 

画树形图两边对xx求导可以,这里不赘述

这里考虑两边同时取微分,利用微分形式不变性。微分形式不变性不需要考虑各变量之间的关系,要什么留什么

 

du=fxdx+fydy+fzdz du=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz

 

如果用ffxx,偏导,由于y,zy,zxx的函数,写出来会比较麻烦,根据微分形式不变性,只需要同时取微分,不需要研究各变量之间的关系

例如本题,因为dydy前是fy\begin{aligned} \frac{\partial f}{\partial y}\end{aligned}不涉及xx,如果后面需要xx,按照题目给出的,想办法将dydy换成dxdx即可,不需要在该式上继续计算

 

exyxy=2e^{xy}-xy=2两端取微分

exy(ydx+xdy)(ydx+xdy)=0dy=yxdx e^{xy}(ydx+xdy)-(ydx+xdy)=0\Rightarrow dy=- \frac{y}{x}dx

ex=0xzsinttdt\begin{aligned} e^{x}=\int_{0}^{x-z}\frac{\sin t}{t}dt\end{aligned}两边取微分

exdx=sin(xz)xz(dxdz)dz=(1ex(xz)sin(xz))dx e^{x}dx=\frac{\sin (x-z)}{x-z}(dx-dz)\Rightarrow dz=\left(1-\frac{e^{x}(x-z)}{\sin (x-z)}\right)dx

因此

du=[fxyxfy+[1ex(xz)sin(xz)]fz]dx du=\left[\frac{\partial f}{\partial x}- \frac{y}{x}\frac{\partial f}{\partial y}+\left[1-\frac{e^{x}(x-z)}{\sin (x-z)}\right]\frac{\partial f}{\partial z}\right]dx

 

例9:设z=z(x,y)z=z(x,y)是由方程x2+y2z=ϕ(x+y+z)x^{2}+y^{2}-z=\phi (x+y+z)所确定的函数,其中ϕ\phi具有二阶导数,且ϕ1\phi '\ne 1

  • dz=()dz=()

  • u(x,y)=1xy(zxzy)\begin{aligned} u(x,y)=\frac{1}{x-y}\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)\end{aligned},求ux\begin{aligned} \frac{\partial u}{\partial x}\end{aligned}

 

虽然ϕ(x+y+z)\phi (x+y+z)其中的变量是x+y+zx+y+z,但求导的时候仍然正常求,对xx求导只需要看成符合了两次就行

 

F(x,y,z)=x2+y2zϕ(x+y+z)=0F(x,y,z)=x^{2}+y^{2}-z-\phi (x+y+z)=0

zx=FxFz=2xϕ1+ϕzy=FyFz=2yϕ1+ϕdz=zxdx+zydy=11+ϕ[(2xϕ)dx+(2yϕ)dy] \begin{aligned} \frac{\partial z}{\partial x}&=-\frac{F_{x}}{F_{z}}=\frac{2x-\phi '}{1+\phi '}\\ \frac{\partial z}{\partial y}&=-\frac{F_{y}}{F_{z}}=\frac{2y-\phi '}{1+\phi '}\\ dz&=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy=\frac{1}{1+\phi '}[(2x-\phi ')dx+(2y-\phi ')dy] \end{aligned}

还可以用两边同时取微分,思路和上面基本相同

2xdx+2ydydz=ϕ(dx+dy+dz)dz=2xϕ1+ϕdx+2yϕ1+ϕdy \begin{aligned} 2xdx+2ydy-dz&=\phi '\cdot (dx+dy+dz)\\ dz&=\frac{2x-\phi '}{1+\phi '}dx+\frac{2y-\phi '}{1+\phi '}dy \end{aligned}

由于 u(x,y)=1xy(zxzy)\begin{aligned} u(x,y)=\frac{1}{x-y}\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)\end{aligned},所以

ux=2(1+ϕ)2(1+zx)ϕ=2(2x+1)ϕ(1+ϕ)3 \frac{\partial u}{\partial x}=\frac{-2}{(1+\phi ')^{2}}\left(1+\frac{\partial z}{\partial x}\right)\phi ''=-\frac{2(2x+1)\phi ''}{(1+\phi ')^{3}}

 

说一下

zx=FxFz\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}

怎么来的

已知z=(x,y)z=(x,y)F(x,y,z)=0F(x,y,z)=0,或只给了F(x,y,z)=0F(x,y,z)=0

F(x,y,z)=0两边同时对x求导Fx+Fzzx=0zx=FxFz\begin{aligned} F(x,y,z)&=0\\&两边同时对x求导\\F_{x}+F_{z}\frac{\partial z}{\partial x}&=0\\\frac{\partial z}{\partial x}&=-\frac{F_{x}}{F_{z}}\end{aligned}

这里的FxF_{x}可以理解为

Fx(x,y,z(x,y))\begin{aligned} \frac{\partial F}{\partial x}(x,y,z(x,y))\end{aligned}

Fx+Fzzx\begin{aligned} F_{x}+F_{z}\frac{\partial z}{\partial x}\end{aligned}可以理解为

x(F(x,y,z(x,y)))\frac{\partial }{\partial x}(F(x,y,z(x,y)))

因此FxF_{x}是要把y,zy,z看做常量

思路来源:

作者:盗铃人

链接:函数u=f(x,y,z),u对x的偏导与f对x的偏导有什么区别? - 知乎 (zhihu.com)

如果题目中给出已知z=z(x,y)z=z(x,y)F(x,y,z)=0F(x,y,z)=0确定,求偏导zx\begin{aligned} \frac{\partial z}{\partial x}\end{aligned}一定能用公式法,求Fx\begin{aligned} \frac{\partial F}{\partial x}\end{aligned}就要把y,zy,z看做常数

已知z=z(x,y)z=z(x,y)F(x,y,z)=0F(x,y,z)=0确定,z=z(x,y)z=z(x,y)可以看做移项得来的(移项可能得不到),因此地位也相同,所以求Fx\begin{aligned} \frac{\partial F}{\partial x}\end{aligned}也把y,zy,z看做常数

如果只有F(x,y,z)=0F(x,y,z)=0,需要自己判断关系,是否有x,y,zx,y,z其中一个符合定理,如果符合定理,求偏导zx\begin{aligned} \frac{\partial z}{\partial x}\end{aligned}就能用公式法,Fx\begin{aligned} \frac{\partial F}{\partial x}\end{aligned}无论有没有隐函数关系,都要把y,zy,z看做常数

上面提到的定理为

由方程F(x,y,z)=0F(x,y,z)=0确定的隐函数z=z(x,y)z=z(x,y)

F(x,y,z)F(x,y,z)在点P(x0,y0,z0)P(x_{0},y_{0},z_{0})的某一邻域内有连续偏导数,且F(x0,y0,z0)=0,Fz(x0,y0,z0)0F(x_{0},y_{0},z_{0})=0,F'_{z}(x_{0},y_{0},z_{0})\ne 0,则方程F(x,y,z)=0F(x,y,z)=0在点(x0,y0,z0)(x_{0},y_{0},z_{0})的某邻域可唯一确定一个有连续偏导数的函数z=z(x,y)z=z(x,y),并有

zx=FxFz,zy=FyFz\frac{\partial z}{\partial x}=-\frac{F'_{x}}{F'_{z}},\frac{\partial z}{\partial y}=-\frac{F'_{y}}{F'_{z}}

如果给出z=z(x,y)z=z(x,y)F(x,y,z)F(x,y,z),那么此时不能用公式法,此时zzx,yx,y的因变量,求偏导Fx\begin{aligned} \frac{\partial F}{\partial x}\end{aligned}时,yy依旧可以看做常数,但zz不是,需要求Fzzx\begin{aligned} \frac{\partial F}{\partial z}\frac{\partial z}{\partial x}\end{aligned},且zx\begin{aligned} \frac{\partial z}{\partial x}\end{aligned}不能用定义法

思路来源:

作者:百度网友6802f3c

链接:隐函数求偏导数。如图,为什么F对x求偏导能把z看成常数?z不是对x的导数吗~?_百度知道 (baidu.com)