【高等数学基础进阶】多元函数微分学-重极限、连续、偏导数、全微分

140 阅读6分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

二元函数

定义:设DD是平面上的一个点集,若对每个点P(x,y)DP(x,y)\in D,变量zz按照某一对应法则ff有一个确定的值与之对应,则称zzx,yx,y的二元函数,记为

z=f(x,y) z=f(x,y)

其中点集DD称为该函数的定义域,x,yx,y称为自变量,zz称为因变量,函数f(x,y)f(x,y)的全体所构成的集合称为函数ff的值域,记为f(D)f(D)

 

通常情况下,二元函数z=f(x,y)z=f(x,y)在几何上表示一张空间曲面

 

二元函数的极限

定义:设函数f(x,y)f(x,y)在区域DD上有定义,点P0(x0,y0)DP_0(x_0,y_0)\in D或为DD的边界点,如果ξ>0\forall \xi>0,存在ξ>0\xi>0,当P(x,y)DP(x,y)\in D,且0<(xx0)2+(yy0)2<ξ0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\xi时,都有

f(x,y)A<ξ |f(x,y)-A|<\xi

成立,则称常数AA为函数f(x,y)f(x,y)(x,y)(x0,y0)(x,y)\to(x_0,y_0)时的极限,记为

lim(x,y)(x0,y0)f(x,y)=Alimxx0yy0f(x,y)=AlimPP0f(P)=A \lim_{(x,y)\to(x_0,y_0)}f(x,y)=A或\lim_{\substack{x\to x_0\\y\to y_0}}f(x,y)=A或\lim_{P\to P_0}f(P)=A

 

注:

  1. 这里的极限是要求点(x,y)(x,y)DD内以任意方式趋近于点(x0,y0)(x_{0},y_{0})时,函数f(x,y)f(x,y)都趋近于同一确定的常数AA,否则该极限不存在

 

当一元的时候,xx趋近于x0x_{0}只能沿着xx轴趋向于x0x_{0},可以左边趋向、右边趋向、两边同时趋向

但是对于多元的时候,是要求(x,y)(x,y)任意方式趋向(x0,y0)(x_{0},y_{0})。明显的,过(x0,y0)(x_{0},y_{0})的直线有无穷多条,而且是任意方式,(x,y)(x,y)还可以沿着曲线趋向(x0,y0)(x_{0},y_{0}),沿着离散点趋向(x0,y0)(x_{0},y_{0})。即如果按照任意方式趋向于(x0,y0)(x_{0},y_{0})如果极限不存在,那么极限就不存在

 

  1. 一元函数极限中的下列性质对多元函数仍然成立:

         - 局部有界性:若limxx0f(x)\lim\limits_{x\to x_{0}}f(x)存在,则f(x)f(x)x0x_{0}某去心邻域有界(即局部有界)

         - 保号性:设limxx0f(x)=A>0\lim\limits_{x\to x_{0}}f(x)=A>0,如果A>0A>0(或A<0A<0),则存在δ>0\delta>0,当xU˚(x0,δ)x\in \mathring U(x_{0},\delta)时,f(x)>0f(x)>0(或f(x)<0f(x)<0

         - 有理运算法则:若limf(x)=A,limg(x)=B\lim f(x)=A,\lim g(x)=B,那么

                  - lim(f(x)±g(x))=limf(x)±limg(x)\lim (f(x)\pm g(x))=\lim f(x)\pm \lim g(x)

                  - lim(f(x)g(x))=limf(x)limg(x)\lim(f(x)\cdot g(x))=\lim f(x)\cdot \lim g(x)

                  - limf(x)g(x)=limf(x)limg(x)(B0)\lim\frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}\quad(B\ne0)

         - 极限与无穷小的关系:limf(x)=Af(x)=A+α(x)\lim f(x)=A\Leftrightarrow f(x)=A+\alpha(x),其中limα(x)=0\lim \alpha(x)=0

         - 夹逼定理:若存在NN,当n>Nn>N时,xnynznx_{n}\leq y_{n}\leq z_{n},且limnxn=limnzn=a\lim\limits_{n\to \infty}x_{n}=\lim\limits_{n\to \infty}z_{n}=a,则limnyn=a\lim\limits_{n\to \infty}y_{n}=a

 

多元函数没有洛必达法则

 

例1:求极限limx0y0xy2x2+y2\begin{aligned} \lim\limits_{\substack{x\to0\\y\to0}}\frac{xy^{2}}{x^{2}+y^{2}}\end{aligned}

 

对于00\frac{0}{0}初步判断,如果上面次数高极限为00,如果下面次数高极限为无穷,如果上下次数一样极限不存在

 

0xy2x2+y2x0 0 \leq \left|\frac{xy^{2}}{x^{2}+y^{2}}\right|\leq |x|\to 0

因此极限为00

 

初步判断后如果判断为00,常用方法为取绝对值,用夹逼

此处需要条件

f(x)0f(x)0f(x)\to 0 \Leftrightarrow |f(x)| \to 0

用极限的定义可以证明,

对于xx0,f(x)0x\to x_{0},f(x)\to0,有ξ>0,δ\forall \xi >0,\exists \delta,当0<xx0<δ0<|x-x_{0}|<\delta时,有

f(x)0<ξf(x)<ξ\begin{aligned}|f(x)-0|&< \xi \\|f(x)|&< \xi \end{aligned}

对于xx0,f(x)0x\to x_{0},|f(x)|\to0,有ξ>0,δ\forall \xi >0,\exists \delta,当0<xx0<δ0<|x-x_{0}|<\delta时,有

f(x)0<ξf(x)<ξ\begin{aligned}||f(x)|-0|&< \xi \\|f(x)|&< \xi \end{aligned}

显然二者等价,因此推广到多元函数,有

f(x,y)0f(x,y)0f(x,y)\to0 \Leftrightarrow |f(x,y)|\to 0

 

例2:证明极限limx0y0xyx2+y2\begin{aligned} \lim\limits_{\substack{x\to0\\y\to0}}\frac{xy}{x^{2}+y^{2}}\end{aligned}不存在

 

limx0y=kxkx2x2+k2x2=k1+k2 \lim\limits_{\substack{x\to 0 \\y=kx }}\frac{kx^{2}}{x^{2}+k^{2}x^{2}}=\frac{k}{1+k^{2}}

kk不同时,极限不同,因此不存在

 

证明极限不存在,一般选过该点不同的直线,如果不同直线对应极限不同则极限不存在

 

多元函数的连续性

连续的概念:

lim(x,y)(x0,y0)f(x,y)=f(x0,y0) \lim\limits_{(x,y)\to(x_{0},y_{0})}f(x,y)=f(x_{0},y_{0})

 

连续函数的性质

性质1:多元连续函数的和、差、积、商(分母不为零)仍是连续函数

 

性质2:多元连续函数的复合函数也是连续函数

 

性质3:多元初等函数在其定义域内连续

 

性质4:(最大值定理):有界闭区域DD上的连续函数在区域DD上必能取得最大值与最小值

 

性质5(介值定理):有界闭区域DD上的连续函数在区域DD上必能取得介于最大值与最小值之间的任何值

偏导数

偏导数的定义:

fx(x0,y0)=limΔx0f(x0+Δx,y0)f(x0,y0)Δx=ddxf(x,y0)x=x0fx(x0,y0)=limΔy0f(x0,y0+Δy)f(x0,y0)Δy=ddyf(x0,y)y=y0 \begin{aligned} f_{x}(x_{0},y_{0})=\lim\limits_{\Delta x \to 0}\frac{f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0})}{\Delta x}=\frac{d}{dx}f(x,y_{0})\Big|_{x=x_{0}}^{}\\ f_{x}(x_{0},y_{0})=\lim\limits_{\Delta y \to 0}\frac{f(x_{0},y_{0}+\Delta y)-f(x_{0},y_{0})}{\Delta y}=\frac{d}{dy}f(x_{0},y)\Big|_{y=y_{0}}^{} \end{aligned}

 

例3:f(x,y)=2x+3y1+xyx2+y2\begin{aligned} f(x,y)=\frac{2x+3y}{1+xy \sqrt{x^{2}+y^{2}}}\end{aligned},则fx(0,0)=()f_{x}(0,0)=()

 

可以先求导,然后代入,但比较麻烦,也可以先代入然后求导

 

f(x,0)=2xfx(0,0)=2 f(x,0)=2x \Rightarrow f_{x}(0,0)=2

 

二元函数偏导数的几何意义

![[附件/Pasted image 20220908085444.png|200]]

 

(x0,y0)(x_{0},y_{0})处对xx偏导数,表示当y=y0y=y_{0}时对应的曲线在x0x_{0}处切线的斜率

 

高阶偏导数

定义

x(zx)=2zx2=fxxy(zx)=2zxy=fxyx(zy)=2zyx=fyxy(zy)=2zy2=fyy \begin{aligned} \frac{\partial }{\partial x}\left(\frac{\partial z}{\partial x}\right)&=\frac{\partial^{2} z}{\partial x^{2}}=f_{xx}''\\ \frac{\partial }{\partial y}\left(\frac{\partial z}{\partial x}\right)&=\frac{\partial^{2} z}{\partial x \partial y}=f_{xy}''\\ \frac{\partial }{\partial x}\left(\frac{\partial z}{\partial y}\right)&=\frac{\partial^{2} z}{\partial y \partial x}=f_{yx}''\\ \frac{\partial }{\partial y}\left(\frac{\partial z}{\partial y}\right)&=\frac{\partial^{2} z}{\partial y^{2}}=f_{yy}'' \end{aligned}

 

定理1:如果函数z=f(x,y)z=f(x,y)的两个混合偏导数在区域DD/某点内连续,则在该区域内/该点

2zxy=2zyx \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}

 

全微分

定义:若

Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ)(ρ=(Δx)2+(Δy)2) \Delta z=f(x_{0}+\Delta x,y_{0}+\Delta y)-f(x_{0},y_{0})=A \Delta x+B \Delta y+o(\rho)\quad (\rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}})

则称函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处可微

dz=AΔx+BΔy dz=A \Delta x+B \Delta y

 

其中ρ\rho就是动点到定点的距离

 

定理2(可微的必要条件):如果z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处可微,则在点(x0,y0)(x_{0},y_{0})zx,zy\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}必定存在,且

dz=zxdx+zydy dz=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy

 

证明:

设函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处可微,则有

Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ)(ρ=(Δx)2+(Δy)2) \Delta z=f(x_{0}+\Delta x,y_{0}+\Delta y)-f(x_{0},y_{0})=A \Delta x+B \Delta y+o(\rho)\quad (\rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}})

Δy=0,Δx0\Delta y=0,\Delta x\to0,则有

f(x0+Δx,y0)f(x0,y0)=AΔx+o(Δx)f(x0+Δx,y0)f(x0,y0)Δx=AΔxΔx+oΔxΔxfx(x0,y0)=A \begin{aligned} f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0})&=A \Delta x+o(|\Delta x|)\\ \frac{f(x_{0}+\Delta x,y_{0})-f(x_{0},y_{0})}{\Delta x}&=\frac{A \Delta x}{\Delta x}+\frac{o|\Delta x|}{\Delta x}\\ f_{x}'(x_{0},y_{0})&=A \end{aligned}

 

用定义判断可微性

  1. fx(x0,y0)f_{x}(x_{0},y_{0})fy(x0,y0)f_{y}(x_{0},y_{0})是否都存在

    注意这里用定义,而非直接求导

  1. lim(Δx,Δy)(0,0)Δz[fx(x0,y0)Δx+fy(x0,y0)Δy](Δx)2+(Δy)2\begin{aligned} \lim\limits_{(\Delta x,\Delta y)\to(0,0)}\frac{\Delta z-[f_{x}(x_{0},y_{0})\Delta x+f_{y}(x_{0},y_{0})\Delta y] }{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\end{aligned}是否为零

 

定理3(可微的充分条件):如果z=f(x,y)z=f(x,y)的偏导数zx,zy\frac{\partial z}{\partial x},\frac{\partial z }{\partial y}在点(x0,y0)(x_{0},y_{0})处连续,则函数z=f(x,y)z=f(x,y)在点(x0,y0)(x_{0},y_{0})处可微

 

连续、可导、可微的关系

![[附件/Pasted image 20220908104714.png|200]]

 

![[附件/Pasted image 20220908104831.png|200]]

 

常考题型与典型例题

例4:判断二元函数f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)f(x,y)=\left\{\begin{aligned}&\frac{xy}{x^{2}+y^{2}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.在点(0,0)(0,0)处的连续性和偏导数是否存在

 

limx0y0f(x,y)=limx0y=kx=k1+k2 \lim\limits_{\substack{x\to0\\y\to0}}f(x,y)=\lim\limits_{\substack{x\to0\\y=kx}}=\frac{k}{1+k^{2}}

显然极限不存在

 

由于不知道偏导数是否存在,因此只能用定义或者先带后求

 

定义

fx(0,0)=limΔx0f(0+Δx,0)f(0,0)Δx=limΔx000Δx=0 f_{x}(0,0)=\lim\limits_{\Delta x \to 0}\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{0-0}{\Delta x}=0

 

先带后求

f(x,0)={0x00x=0 f(x,0)=\left\{\begin{aligned}&0&x \ne 0\\&0&x=0\end{aligned}\right.

x=0x=0处函数值为00,在x=0x=0周围也为00,可以看做常函数x=0x=0,因此可导,且导数值为00

 

yy同理,因此偏导数存在

 

例5:设连续函数z=f(x,y)z=f(x,y)满足limx0y1f(x,y)2x+y2x2+(y1)2=0\begin{aligned} \lim\limits_{\substack{x\to 0\\ y\to 1}}\frac{f(x,y)-2x+y-2}{\sqrt{x^{2}+(y-1)^{2}}}=0\end{aligned},则dz(0,1)=()dz \Big|_{(0,1)}^{}=()

 

根据定义

Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ) \Delta z=f(x_{0}+\Delta x,y_{0}+\Delta y)-f(x_{0},y_{0})=A \Delta x+B \Delta y+o(\rho)

但是本题中没有Δx,Δy\Delta x,\Delta y,因此,设x0+Δx=x,y0+Δy=yx_{0}+\Delta x=x,y_{0}+\Delta y=y,有

Δz=f(x,y)f(x0,y0)=A(xx0)+B(yy0)+o((xx0)2+(yy0)2) \Delta z=f(x,y)-f(x_{0},y_{0})=A(x-x_{0})+B(y-y_{0})+o(\sqrt{(x-x_{0})^{2}+(y-y_{0})^{2}})

根据条件limx0y1f(x,y)2x+y2x2+(y1)2=0\begin{aligned} \lim\limits_{\substack{x\to 0\\ y\to 1}}\frac{f(x,y)-2x+y-2}{\sqrt{x^{2}+(y-1)^{2}}}=0\end{aligned},可知

f(x,y)2x+y2=o(x2+(y1)2)(1) f(x,y)-2x+y-2=o(\sqrt{x^{2}+(y-1)^{2}})\quad \text{(1)}

又因为f(x,y)f(x,y)连续,有limx0y1f(x,y)=f(0,1)\lim\limits_{\substack{x\to0\\y\to 1}}f(x,y)=f(0,1)

limx0y1f(x,y)2x+y2=limx0y1o(x2+(y1)2)f(0,1)0+12=0f(0,1)=1 \begin{aligned} \lim\limits_{\substack{x\to0\\y\to 1}}f(x,y)-2x+y-2&=\lim\limits_{\substack{x\to0\\y\to 1}}o(\sqrt{x^{2}+(y-1)^{2}})\\ f(0,1)-0+1-2&=0\\ f(0,1)&=1 \end{aligned}

代回(1)(1)

f(x,y)f(0,1)2x+y1=o(x2+(y1)2)f(x,y)f(0,1)=2x(y1)+o(x2+(y1)2) \begin{aligned} f(x,y)-f(0,1)-2x+y-1&=o(\sqrt{x^{2}+(y-1)^{2}})\\ f(x,y)-f(0,1)&=2x-(y-1)+o(\sqrt{x^{2}+(y-1)^{2}}) \end{aligned}

 

此处主要是为了凑 Δz=f(x,y)f(x0,y0)=A(xx0)+B(yy0)+o((xx0)2+(yy0)2)\Delta z=f(x,y)-f(x_{0},y_{0})=A(x-x_{0})+B(y-y_{0})+o(\sqrt{(x-x_{0})^{2}+(y-y_{0})^{2}})

 

因此在(0,1)(0,1)f(x,y)f(x,y)可微,且有

Δz=2x(y1)+o(x2+(y1)2) \Delta z=2x-(y-1)+o(\sqrt{x^{2}+(y-1)^{2}})

因此A=2,B=1A=2,B=-1,即

dz(0,1)=2dxdy dz \Big|_{(0,1)}^{}=2dx-dy

 

例6:证明以下几个经典的反例

f(x,y)=x+yf(x,y)=|x|+|y|(0,0)(0,0)点连续,但不可导(也不可微)

 

f(x,0)=x不可导 f(x,0)=|x|\quad 不可导

因此显然不可导

 

f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)\begin{aligned} f(x,y)=\left\{\begin{aligned}&\frac{xy}{x^{2}+y^{2}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned}(0,0)(0,0)点可导,但不连续

 

limx0y0f(x,y)=limx0y=kx=k1+k2 \lim\limits_{\substack{x\to0\\y\to0}}f(x,y)=\lim\limits_{\substack{x\to0\\y=kx}}=\frac{k}{1+k^{2}}

显然极限不存在

f(x,0)={0x00x=0 f(x,0)=\left\{\begin{aligned}&0&x \ne 0\\&0&x=0\end{aligned}\right.

x=0x=0处函数值为00,在x=0x=0周围也为00,可以看做常函数x=0x=0,因此可导,且导数值为00

 

个人理解,f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)\begin{aligned} f(x,y)=\left\{\begin{aligned}&\frac{xy}{x^{2}+y^{2}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned},由于 limx0y0f(x,y)=limx0y=kx=k1+k2\lim\limits_{\substack{x\to0\\y\to0}}f(x,y)=\lim\limits_{\substack{x\to0\\y=kx}}=\frac{k}{1+k^{2}}

该式显然k0k \ne 0(如果k=0k=0,则y=0y=0不合题设),且kk \ne \infty,因此f(x,y)f(x,y)在沿x,yx,y轴的方向上连续,且存在偏导;在除了x,yx,y轴以外的方向上,即y=kxy=kx存在的方向上,f(x,y)f(x,y)不连续,偏导存在但与该方向无关(偏导本身就是沿着xxyy方向的)

 

f(x,y)={xyx2+y2(x,y)(0,0)0(x,y)=(0,0)\begin{aligned} f(x,y)=\left\{\begin{aligned}&\frac{xy}{x^{2}+y^{2}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned}(0,0)(0,0)点可导,但不连续

 

在上面已证可导,且fx=0,fy=0f_{x}=0,f_{y}=0

 

用定义判断可微性

  1. fx(x0,y0)f_{x}(x_{0},y_{0})fy(x0,y0)f_{y}(x_{0},y_{0})是否都存在

  2. lim(Δx,Δy)(0,0)Δz[fx(x0,y0)Δx+fy(x0,y0)Δy](Δx)2+(Δy)2\begin{aligned} \lim\limits_{(\Delta x,\Delta y)\to(0,0)}\frac{\Delta z-[f_{x}(x_{0},y_{0})\Delta x+f_{y}(x_{0},y_{0})\Delta y] }{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\end{aligned}是否为零

 

lim(Δx,Δy)(0,0)Δz[fx(x0,y0)Δx+fy(x0,y0)Δy](Δx)2+(Δy)2=lim(Δx,Δy)(0,0)(ΔxΔy(Δx)2+(Δy)20)(0Δx+0Δy)(Δx)2+(Δy)2=lim(Δx,Δy)(0,0)ΔxΔy(Δx)2+(Δy)2不存在不可微 \begin{aligned} &\lim\limits_{(\Delta x,\Delta y)\to(0,0)}\frac{\Delta z-[f_{x}(x_{0},y_{0})\Delta x+f_{y}(x_{0},y_{0})\Delta y] }{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\\ =&\lim\limits_{(\Delta x,\Delta y)\to(0,0)}\frac{\left(\frac{\Delta x \Delta y}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}-0\right)-(0\cdot \Delta x+0\cdot \Delta y)}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\\ =&\lim\limits_{(\Delta x,\Delta y)\to(0,0)}\frac{\Delta x \Delta y}{(\Delta x)^{2}+(\Delta y)^{2}}\\ \Rightarrow& 不存在 \Rightarrow 不可微 \end{aligned}

 

f(x,y){(x2+y2)sin1x2+y2(x,y)(0,0)0(x,y)=(0,0)\begin{aligned} f(x,y)\left\{\begin{aligned}&(x^{2}+y^{2})\sin \frac{1}{x^{2}+y^{2}}&(x,y)\ne (0,0)\\&0&(x,y)=(0,0)\end{aligned}\right.\end{aligned}(0,0)(0,0)点可微,但偏导数不连续

 

fx(0,0)=limΔx0(Δx)2sin1(Δx)20Δx=0fy(0,0)=0x,y对称性可得 \begin{aligned} f_{x}(0,0)&=\lim\limits_{\Delta x \to 0}\frac{(\Delta x)^{2}\sin \frac{1}{(\Delta x)^{2}}-0}{\Delta x}=0\\ f_{y}(0,0)&=0\quad 由x,y对称性可得 \end{aligned}

还有

limΔx0Δy0[(Δx)2+(Δy)2]sin1(Δx)2+(Δy)20(0Δx+0Δy)(Δx)2+(Δy)2=limΔx0Δy0(Δx)2+(Δy)2sin1(Δx)2+(Δy)2=0可微 \begin{aligned} &\lim\limits_{\substack{\Delta x\to 0\\ \Delta y\to 0}}\frac{[(\Delta x)^{2}+(\Delta y)^{2}]\sin \frac{1}{(\Delta x)^{2}+(\Delta y)^{2}}-0-(0\cdot \Delta x+0\cdot \Delta y)}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}\\ =&\lim\limits_{\substack{\Delta x\to 0\\ \Delta y\to 0}}\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\sin \frac{1}{(\Delta x)^{2}+(\Delta y)^{2}}\\ =&0\\ \Rightarrow &可微 \end{aligned}

再证明偏导数不连续

 

这里不能先代再求

函数的左右导数记为

f(x0),f+(x0)f_{-}'(x_{0}),f'_{+}(x_{0})

导函数的左右极限记为

f(x0),f(x0+)f'(x_{0}-),f'(x_{0}+)

先定义某一定点(x0,y0)(x_{0},y_{0})处的导数

limΔx0f(x0+Δx)f(x0)Δx\lim\limits_{\Delta x \to 0}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}

这个极限值被称为ffx0x_{0}处的导数,记为f(x0)f'(x_{0})

再从特殊(x0x_{0})到一半

limΔx0f(x+Δx)f(x)Δx\lim\limits_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x)=\lim\limits_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

由上可知,函数的左右导数是说ff在某具体点的左右导数

f(x0)=limΔx0f(x0+Δx)f(x0)Δxf+(x0)=limΔx0+f(x0+Δx)f(x0)Δx\begin{aligned} f_{-}'(x_{0})&=\lim\limits_{\Delta x \to 0^{-}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}\\f_{+}'(x_{0})&=\lim\limits_{\Delta x \to 0^{+}}\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}\end{aligned}

而函数的导函数的左右极限

f(x0)=limxx0(limΔx0f(x+Δx)f(x)Δx)f(x0+)=limxx0+(limΔx0f(x+Δx)f(x)Δx)\begin{aligned}f'(x_{0}-)&=\lim\limits_{x \to x_{0}^{-}}\left(\lim\limits_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\right)\\f'(x_{0}+)&=\lim\limits_{x \to x_{0}^{+}}\left(\lim\limits_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\right)\end{aligned}

显然二者的对象不同,函数的左右导数强调的是函数,而导函数的左右极限强调的是导函数

作者:留给你柔软肚皮

链接:导函数的左右极限和左右导数有什么区别? - 知乎 (zhihu.com)

所以说,直接求导不存在并不能说明导数不存在,只能说明,这个f'(x0)是不连续的是吧; 然后,若已知导函数f'(x)在x0处连续,那么就必须要用直接求导法来求解,如果用定义法的话,那一定会缺漏一些东西

作者:桥下落花

链接:求导用定义法、公式法结果不一样 - 知乎 (zhihu.com)

个人哔哔:或许可以这么理解,就像本题,在(0,0)(0,0)处,设Δx0\Delta x \to 0,那么f(0+Δx)0f(0+\Delta x)\to 0,这是由定义法求得的,但是,这的函数的增量是存在的,即使增量0\to 0,正因为增量不能忽略,此处导函数的极限就不为00,也就是上面所说缺漏的东西

 

fx(x,y)=2xsin1x2+y22xx2+y2cos1x2+y2 f_{x}(x,y)=2x \sin \frac{1}{x^{2}+y^{2}}- \frac{2x}{x^{2}+y^{2}}\cos \frac{1}{x^{2}+y^{2}}

显然当x0,y0x \to 0,y \to 0极限不存在