图的遍历算法的实现——深度优先遍历与广度优先遍历

368 阅读3分钟

本文已参与「新人创作礼」活动, 一起开启掘金创作之路。

图的遍历算法

从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历。图有两种遍历次序方案:深度优先遍历和广度优先遍历。

1 深度优先遍历

深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS。

假设需要完成—个任务,要求在如左下图这样的—个迷宫中,从顶点A开始要走遍所有的图顶点并作上标记。

image-20220911105327479.png

深度优先遍历其实就是一个递归的过程,会发现其实转换成右上图后,就像是一棵树的前序遍历。从图中某个顶点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。

用邻接矩阵实现深度优先遍历:

Boolean visited[MAXVEX]; /* 访问标志的数组 */

/* 邻接矩阵的深度优先递归算法 */
void DFS(MGraph G, int i){
	int j;
 	visited[i] = TRUE;
 	printf("%c ", G.vexs[i]);/* 打印顶点,也可以其它操作 */
	for(j = 0; j < G.numVertexes; j++)
		if(G.arc[i][j] == 1 && !visited[j])
 			DFS(G, j);/* 对为访问的邻接顶点递归调用 */
}

/* 邻接矩阵的深度遍历操作 */
void DFSTraverse(MGraph G){
	int i;
 	for(i = 0; i < G.numVertexes; i++)
 		visited[i] = FALSE; /* 初始所有顶点状态都是未访问过状态 */
	for(i = 0; i < G.numVertexes; i++)
 		if(!visited[i]) /* 对未访问过的顶点调用DFS,若是连通图,只会执行一次 */ 
			DFS(G, i);
}

用邻接表实现深度优先遍历,和邻接矩阵的深度优先遍历最大的区别就在于将数组换成了链表。

/* 邻接表的深度优先递归算法 */
void DFS(GraphAdjList GL, int i)
{
	EdgeNode *p;
 	visited[i] = TRUE;
 	printf("%c ",GL->adjList[i].data);/* 打印顶点,也可以其它操作 */
	p = GL->adjList[i].firstedge;
	while(p)
	{
 		if(!visited[p->adjvex])
 			DFS(GL, p->adjvex);/* 对为访问的邻接顶点递归调用 */
		p = p->next;
 	}
}

/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL)
{
	int i;
 	for(i = 0; i < GL->numVertexes; i++)
 		visited[i] = FALSE; /* 初始所有顶点状态都是未访问过状态 */
	for(i = 0; i < GL->numVertexes; i++)
 		if(!visited[i]) /* 对未访问过的顶点调用DFS,若是连通图,只会执行一次 */ 
			DFS(GL, i);
}

2 广度优先遍历

**广度优先遍历(Bread First Search),又称为广度优先搜索,简称BFS。**图的深度优先遍历类似于树的前序遍历,图的广度优先遍历就类似于树的层序遍历。如下图所示,顶点A放置在最上面第一层,让与它有边的顶点B、F为第二层,再让与B和F有边的顶点C、I、G、E为第三层,再将这四个顶点有边的D、H放在第四层。

image-20220911113942252.png

用邻接矩阵实现广度优先遍历:

/* 邻接矩阵的广度遍历算法 */
void BFSTraverse(MGraph G)
{
	int i, j;
	Queue Q;
	for(i = 0; i < G.numVertexes; i++)
       	visited[i] = FALSE;
    InitQueue(&Q);		/* 初始化一辅助用的队列 */
    for(i = 0; i < G.numVertexes; i++)  /* 对每一个顶点做循环 */
    {
		if (!visited[i])	/* 若是未访问过就处理 */
		{
			visited[i]=TRUE;		/* 设置当前顶点访问过 */
			printf("%c ", G.vexs[i]);/* 打印顶点,也可以其它操作 */
			EnQueue(&Q,i);		/* 将此顶点入队列 */
			while(!QueueEmpty(Q))	/* 若当前队列不为空 */
			{
				DeQueue(&Q,&i);	/* 将队对元素出队列,赋值给i */
				for(j=0;j<G.numVertexes;j++) 
				{ 
					/* 判断其它顶点若与当前顶点存在边且未访问过  */
					if(G.arc[i][j] == 1 && !visited[j]) 
					{ 
 						visited[j]=TRUE;			/* 将找到的此顶点标记为已访问 */
						printf("%c ", G.vexs[j]);	/* 打印顶点 */
						EnQueue(&Q,j);				/* 将找到的此顶点入队列  */
					} 
				} 
			}
		}
	}
}

用邻接表实现深度优先遍历:

/* 邻接表的广度遍历算法 */
void BFSTraverse(GraphAdjList GL)
{
	int i;
    EdgeNode *p;
	Queue Q;
	for(i = 0; i < GL->numVertexes; i++)
       	visited[i] = FALSE;
    InitQueue(&Q);
   	for(i = 0; i < GL->numVertexes; i++)
   	{
		if (!visited[i])
		{
			visited[i]=TRUE;
			printf("%c ",GL->adjList[i].data);/* 打印顶点,也可以其它操作 */
			EnQueue(&Q,i);
			while(!QueueEmpty(Q))
			{
				DeQueue(&Q,&i);
				p = GL->adjList[i].firstedge;	/* 找到当前顶点的边表链表头指针 */
				while(p)
				{
					if(!visited[p->adjvex])	/* 若此顶点未被访问 */
 					{
 						visited[p->adjvex]=TRUE;
						printf("%c ",GL->adjList[p->adjvex].data);
						EnQueue(&Q,p->adjvex);	/* 将此顶点入队列 */
					}
					p = p->next;	/* 指针指向下一个邻接点 */
				}
			}
		}
	}
}

图的深度优先遍历与广度优先遍历算法,它们在时间复杂度上是一样的,两者在全图遍历上是没有优劣之分的。不过如果图顶点和边非常多,不能在短时间内遍历完成,遍历的目的是为了寻找合适的顶点,那么选择哪种遍历就要仔细斟酌了。深度优先更适合目标比较明确,以找到目标为主要目的的情况,而广度优先更适合在不断扩大遍历范围时找到相对最优解的情况