Kafka术语
消息:Record。Kafka 是消息引擎嘛,这里的消息就是指 Kafka 处理的主要对象。
主题:Topic。主题是承载消息的逻辑容器,在实际使用中多用来区分具体的业务。
分区:Partition。一个有序不变的消息序列。每个主题下可以有多个分区。
消息位移:Offset。表示分区中每条消息的位置信息,是一个单调递增且不变的值。
副本:Replica。Kafka 中同一条消息能够被拷贝到多个地方以提供数据冗余,这些地方就是所谓的副本。副本还分为领导者副本和追随者副本,各自有不同的角色划分。副本是在分区层级下的,即每个分区可配置多个副本实现高可用。
生产者:Producer。向主题发布新消息的应用程序。
消费者:Consumer。从主题订阅新消息的应用程序。
消费者位移:Consumer Offset。表征消费者消费进度,每个消费者都有自己的消费者位移。
消费者组:Consumer Group。多个消费者实例共同组成的一个组,同时消费多个分区以实现高吞吐。
重平衡:Rebalance。消费者组内某个消费者实例挂掉后,其他消费者实例自动重新分配订阅主题分区的过程。Rebalance 是 Kafka 消费者端实现高可用的重要手段。
\
分区
Kafka 的消息组织方式实际上是三级结构:主题 - 分区 - 消息。主题下的每条消息只会保存在某一个分区中,而不会在多个分区中被保存多份。官网上的这张图非常清晰地展示了 Kafka 的三级结构,如下所示:
分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性(Scalability)。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的读写请求处理。并且,我们还可以通过添加新的节点机器来增加整体系统的吞吐量。
有哪些分区策略
- 轮询策略
- 随机策略
- 按消息键保序策略
Kafka 允许为每条消息定义消息键,简称为 Key。这个 Key 的作用非常大,它可以是一个有着明确业务含义的字符串,比如客户代码、部门编号或是业务 ID 等;也可以用来表征消息元数据。特别是在 Kafka 不支持时间戳的年代,在一些场景中,工程师们都是直接将消息创建时间封装进 Key 里面的。一旦消息被定义了 Key,那么你就可以保证同一个 Key 的所有消息都进入到相同的分区里面,由于每个分区下的消息处理都是有顺序的,故这个策略被称为按消息键保序策略,如下图所示。
Kafka 默认分区策略实际上同时实现了两种策略:如果指定了 Key,那么默认实现按消息键保序策略;如果没有指定 Key,则使用轮询策略。
如何保证消息不丢失
- 不要使用 producer.send(msg),而要使用 producer.send(msg, callback)。记住,一定要使用带有回调通知的 send 方法。
- 设置 acks = all。acks 是 Producer 的一个参数,代表了你对“已提交”消息的定义。如果设置成 all,则表明所有副本 Broker 都要接收到消息,该消息才算是“已提交”。这是最高等级的“已提交”定义。
- 设置 retries 为一个较大的值。这里的 retries 同样是 Producer 的参数,对应前面提到的 Producer 自动重试。当出现网络的瞬时抖动时,消息发送可能会失败,此时配置了 retries > 0 的 Producer 能够自动重试消息发送,避免消息丢失。
- 设置 unclean.leader.election.enable = false。这是 Broker 端的参数,它控制的是哪些 Broker 有资格竞选分区的 Leader。如果一个 Broker 落后原先的 Leader 太多,那么它一旦成为新的 Leader,必然会造成消息的丢失。故一般都要将该参数设置成 false,即不允许这种情况的发生。
- 设置 replication.factor >= 3。这也是 Broker 端的参数。其实这里想表述的是,最好将消息多保存几份,毕竟目前防止消息丢失的主要机制就是冗余。
- 设置 min.insync.replicas > 1。这依然是 Broker 端参数,控制的是消息至少要被写入到多少个副本才算是“已提交”。设置成大于 1 可以提升消息持久性。在实际环境中千万不要使用默认值 1。
- 确保 replication.factor > min.insync.replicas。如果两者相等,那么只要有一个副本挂机,整个分区就无法正常工作了。我们不仅要改善消息的持久性,防止数据丢失,还要在不降低可用性的基础上完成。推荐设置成 replication.factor = min.insync.replicas + 1。
- 确保消息消费完成再提交。Consumer 端有个参数 enable.auto.commit,最好把它设置成 false,并采用手动提交位移的方式。就像前面说的,这对于单 Consumer 多线程处理的场景而言是至关重要的。
消费者组到底是什么
\
消费者组,即 Consumer Group,应该算是 Kafka 比较有亮点的设计了。那么何谓 Consumer Group 呢?用一句话概括就是:Consumer Group 是 Kafka 提供的可扩展且具有容错性的消费者机制。既然是一个组,那么组内必然可以有多个消费者或消费者实例(Consumer Instance),它们共享一个公共的 ID,这个 ID 被称为 Group ID。组内的所有消费者协调在一起来消费订阅主题(Subscribed Topics)的所有分区(Partition)。当然,每个分区只能由同一个消费者组内的一个 Consumer 实例来消费。
理解 Consumer Group 记住下面这三个特性就好了。
- Consumer Group 下可以有一个或多个 Consumer 实例。这里的实例可以是一个单独的进程,也可以是同一进程下的线程。在实际场景中,使用进程更为常见一些。
- Group ID 是一个字符串,在一个 Kafka 集群中,它标识唯一的一个 Consumer Group。
- Consumer Group 下所有实例订阅的主题的单个分区,只能分配给组内的某个 Consumer 实例消费。这个分区当然也可以被其他的 Group 消费。