两个单链表相交的一系列问题
【题目】给定两个可能有环也可能无环的单链表,头节点head1和head2。请实现一个函数,如果两个链表相交,请返回相交的第一个节点。如果不相交,返回null
【要求】如果两个链表长度之和为N,时间复杂度请达到O(N),额外空间复杂度请达到O(1)。
public class Solution {
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
//两个可能有环或无环的单链表相交问题
public static Node getIntersectNode(Node head1, Node head2) {
if(head1 == null || head2 == null) return null;
Node loop1 = getLoopNode(head1);
Node loop2 = getLoopNode(head2);
// 两个无环单链表相交情况
if (loop1 == null && loop2 == null){
return noLoop(head1,head2);
}
// 两个有环单链表相交情况
if (loop1 != null && loop2 != null){
return bothLoop(head1,loop1,head2,loop2);
}
// 一个有环单链表和一个无环单链表绝对不会相交
return null;
}
// 获得一个链表的入环节点
public static Node getLoopNode(Node head) {
// 少于三个节点的链表一定无环
if(head == null || head.next == null || head.next.next == null) return null;
Node slow = head.next;
Node fast = head.next.next;
while (slow != fast){
if (fast.next == null || fast.next.next == null) return null;
fast = fast.next.next;
slow = slow.next;
}
// 当找到快慢指针在环内相遇后,让其中一个指针再从head前进,另一个从交点前进,则再次相遇的点为入环节点
fast = head;
while (slow != fast){
slow = slow.next;
fast = fast.next;
}
return slow;
}
// 两个无环单链表相交
public static Node noLoop(Node head1, Node head2) {
Node cur1 = head1;
Node cur2 = head2;
// n 为两个链表相差的长度
int n = 0;
while (cur1.next != null){
n++;
cur1 = cur1.next;
}
while (cur2.next != null){
n--;
cur2 = cur2.next;
}
// 两个无环单链表的末尾节点不相同一定不相交
if (cur1 != cur2) return null;
// cur1为较长链表的头结点 cur2为短的链表头结点
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n > 0){
n--;
cur1 = cur1.next;
}
while (cur1 != cur2){
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}
public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
if (head1 == null || head2 == null) return null;
Node cur1 = null;
Node cur2 = null;
// 入环节点相同相当于两个无环单链表相交的情况
if(loop1 == loop2){
cur1 = head1;
cur2 = head2;
int n = 0;
while (cur1 != loop1) {
n++;
cur1 = cur1.next;
}
while (cur2 != loop2) {
n--;
cur2 = cur2.next;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}else {
cur1 = loop1.next;
while (cur1 != loop1){
if (cur1 == loop2) return loop1;
cur1 = cur1.next;
}
return null;
}
}
public static void main(String[] args) {
// 1->2->3->4->5->6->7->null
Node head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
// 0->9->8->6->7->null
Node head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
// 1->2->3->4->5->6->7->4...
head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
head1.next.next.next.next.next.next = head1.next.next.next; // 7->4
// 0->9->8->2...
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next; // 8->2
System.out.println(getIntersectNode(head1, head2).value);
// 0->9->8->6->4->5->6..
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
}
}
二叉树的先序、中序、后序的递归和非递归遍历
public class Solution {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 先序遍历的递归方式
public static void preOrderRecur(Node head) {
if (head == null) {
return;
}
System.out.print(head.value + " ");
preOrderRecur(head.left);
preOrderRecur(head.right);
}
//中序遍历的递归方式
public static void inOrderRecur(Node head) {
if (head == null) {
return;
}
inOrderRecur(head.left);
System.out.print(head.value + " ");
inOrderRecur(head.right);
}
//后序遍历的递归方式
public static void posOrderRecur(Node head) {
if (head == null) {
return;
}
posOrderRecur(head.left);
posOrderRecur(head.right);
System.out.print(head.value + " ");
}
//先序遍历的非递归方式
public static void preOrderUnRecur(Node head) {
System.out.print("pre-order: ");
if (head != null) {
Stack<Node> stack = new Stack<Node>();
stack.add(head);
while (!stack.isEmpty()) {
head = stack.pop();
System.out.print(head.value + " ");
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
}
System.out.println();
}
//中序遍历的非递归方式 每颗子树,整棵树左边界进栈,依次弹出的过程中,对弹出节点的右树周而复始
public static void inOrderUnRecur(Node head) {
System.out.print("in-order: ");
if (head != null) {
Stack<Node> stack = new Stack<Node>();
while (!stack.isEmpty() || head != null) {
if (head != null) {
stack.push(head);
head = head.left;
} else {
head = stack.pop();
System.out.print(head.value + " ");
head = head.right;
}
}
}
System.out.println();
}
// 后序遍历的非递归方式 一个放栈一个收栈 弹出cur到收栈里,再把cur的孩子先左后右再放入栈中,最后把收栈里的所有节点倒出来
public static void posOrderUnRecur1(Node head) {
System.out.print("pos-order: ");
if (head != null) {
Stack<Node> s1 = new Stack<Node>();
Stack<Node> s2 = new Stack<Node>();
s1.push(head);
while (!s1.isEmpty()) {
head = s1.pop();
s2.push(head);
if (head.left != null) {
s1.push(head.left);
}
if (head.right != null) {
s1.push(head.right);
}
}
while (!s2.isEmpty()) {
System.out.print(s2.pop().value + " ");
}
}
System.out.println();
}
public static void posOrderUnRecur2(Node h) {
System.out.print("pos-order: ");
if (h != null) {
Stack<Node> stack = new Stack<Node>();
stack.push(h);
Node c = null;
while (!stack.isEmpty()) {
c = stack.peek();
if (c.left != null && h != c.left && h != c.right) {
stack.push(c.left);
} else if (c.right != null && h != c.right) {
stack.push(c.right);
} else {
System.out.print(stack.pop().value + " ");
h = c;
}
}
}
System.out.println();
}
public static void main(String[] args) {
Node head = new Node(5);
head.left = new Node(3);
head.right = new Node(8);
head.left.left = new Node(2);
head.left.right = new Node(4);
head.left.left.left = new Node(1);
head.right.left = new Node(7);
head.right.left.left = new Node(6);
head.right.right = new Node(10);
head.right.right.left = new Node(9);
head.right.right.right = new Node(11);
// recursive
System.out.println("==============recursive==============");
System.out.print("pre-order: ");
preOrderRecur(head);
System.out.println();
System.out.print("in-order: ");
inOrderRecur(head);
System.out.println();
System.out.print("pos-order: ");
posOrderRecur(head);
System.out.println();
// unrecursive
System.out.println("============unrecursive=============");
preOrderUnRecur(head);
inOrderUnRecur(head);
posOrderUnRecur1(head);
posOrderUnRecur2(head);
}
}
直观打印二叉树(辅助方法,不用学习)
public class Code02_PrintBinaryTree {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static void printTree(Node head) {
System.out.println("Binary Tree:");
printInOrder(head, 0, "H", 17);
System.out.println();
}
public static void printInOrder(Node head, int height, String to, int len) {
if (head == null) {
return;
}
printInOrder(head.right, height + 1, "v", len);
String val = to + head.value + to;
int lenM = val.length();
int lenL = (len - lenM) / 2;
int lenR = len - lenM - lenL;
val = getSpace(lenL) + val + getSpace(lenR);
System.out.println(getSpace(height * len) + val);
printInOrder(head.left, height + 1, "^", len);
}
public static String getSpace(int num) {
String space = " ";
StringBuffer buf = new StringBuffer("");
for (int i = 0; i < num; i++) {
buf.append(space);
}
return buf.toString();
}
public static void main(String[] args) {
Node head = new Node(1);
head.left = new Node(-222222222);
head.right = new Node(3);
head.left.left = new Node(Integer.MIN_VALUE);
head.right.left = new Node(55555555);
head.right.right = new Node(66);
head.left.left.right = new Node(777);
printTree(head);
head = new Node(1);
head.left = new Node(2);
head.right = new Node(3);
head.left.left = new Node(4);
head.right.left = new Node(5);
head.right.right = new Node(6);
head.left.left.right = new Node(7);
printTree(head);
head = new Node(1);
head.left = new Node(1);
head.right = new Node(1);
head.left.left = new Node(1);
head.right.left = new Node(1);
head.right.right = new Node(1);
head.left.left.right = new Node(1);
printTree(head);
}
}
二叉树的层序遍历和获得最大宽度
public class Solution {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 二叉树层序遍历
public void width(Node head){
if (head == null) return;
Queue<Node> queue = new LinkedList<>();
queue.add(head);
while (!queue.isEmpty()){
Node cur = queue.poll();
System.out.println(cur.value);
if (cur.left != null){
queue.add(cur.left);
}
if (cur.right != null){
queue.add(cur.right);
}
}
}
//寻找二叉树最大宽度数 准备一个哈希表,来记录<节点,节点所在的层数>
public static int getMaxWidth(Node head) {
if(head == null) return 0;
HashMap<Node,Integer> levelMap = new HashMap<>();
levelMap.put(head,1);
Queue<Node> queue = new LinkedList<>();
queue.add(head);
int curLevel = 1;
int curLevelNodes = 0;
int maxWidth = Integer.MIN_VALUE;
while (!queue.isEmpty()){
Node cur = queue.poll();
// 出于一个层级,节点数加一
if (levelMap.get(cur) == curLevel){
curLevelNodes++;
}else {
maxWidth = Math.max(maxWidth,curLevelNodes);
curLevel++;
curLevelNodes = 0;
}
if (cur.left != null){
queue.add(cur.left);
levelMap.put(cur.left,levelMap.get(cur) + 1);
}
if (cur.right != null){
queue.add(cur.right);
levelMap.put(cur.right,levelMap.get(cur) + 1);
}
}
return maxWidth;
}
public static void main(String[] args) {
Node head = new Node(5);
head.left = new Node(3);
head.right = new Node(8);
head.left.left = new Node(2);
head.left.right = new Node(4);
head.left.left.left = new Node(1);
head.right.left = new Node(7);
head.right.left.left = new Node(6);
head.right.right = new Node(10);
head.right.right.left = new Node(9);
head.right.right.right = new Node(11);
System.out.println(getMaxWidth(head));
}
}