GC垃圾回收算法和垃圾收集器关系
天上飞的理念,要有落地的实现(垃圾收集器就是GC垃圾回收算法的实现)
GC算法是内存回收的方法论,垃圾收集器就是算法的落地实现
因为目前为止还没有完美的收集器出现,更没有万能的收集器,只是针对具体应用选择最合适的收集器,进行分代收集(哪个代用什么收集器)
四个主要的垃圾收集器
- Serial:串行回收
-XX:+UseSeriallGC
- Parallel:并行回收
-XX:+UseParallelGC
- CMS:并发标记清除
- G1
Serial
串行垃圾回收器,它为单线程环境设计且值使用一个线程进行垃圾收集,会暂停所有的用户线程,只有当垃圾回收完成时,才会重新唤醒主线程继续执行。所以不适合服务器环境。
Parallel
并行垃圾收集器,多个垃圾收集线程并行工作,此时用户线程也是阻塞的,适用于科学计算 / 大数据处理等弱交互场景,也就是说Serial 和 Parallel其实是类似的,不过是多了几个线程进行垃圾收集,但是主线程都会被暂停,但是并行垃圾收集器处理时间,肯定比串行的垃圾收集器要更短
CMS
并发标记清除,用户线程和垃圾收集线程同时执行(不一定是并行,可能是交替执行),不需要停顿用户线程,互联网公司都在使用,适用于响应时间有要求的场景。并发是可以有交互的,也就是说可以一边进行收集,一边执行应用程序。
G1
G1垃圾回收器将堆内存分割成不同区域,然后并发的进行垃圾回收
垃圾收集器总结
注意:并行垃圾回收在单核CPU下可能会更慢
查看默认垃圾收集器
使用下面JVM命令,查看配置的初始参数
-XX:+PrintCommandLineFlags
然后运行一个程序后,能够看到它的一些初始配置信息
-XX:InitialHeapSize=266376000 -XX:MaxHeapSize=4262016000 -XX:+PrintCommandLineFlags -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:-UseLargePagesIndividualAllocation -XX:+UseParallelGC
移动到最后一句,就能看到 -XX:+UseParallelGC
说明使用的是并行垃圾回收
-XX:+UseParallelGC
经典的垃圾收集器有哪些
底层源码
各垃圾收集器的使用范围
Java中一共有7大垃圾收集器
新生代使用的:
- Serial Copying: UserSerialGC,串行垃圾回收器
- Parallel Scavenge:UserParallelGC,并行垃圾收集器
- ParNew:UserParNewGC,新生代并行垃圾收集器
老年区使用的:
- Serial Old:UseSerialOldGC,老年代串行垃圾收集器
(已经被移除)
- Parallel Compacting(Parallel Old):UseParallelOldGC,老年代并行垃圾收集器
- CMS:UseConcMarkSwepp,并行标记清除垃圾收集器
各区都能使用的: G1:UseG1GC,G1垃圾收集器
垃圾收集器就来具体实现这些GC算法并实现内存回收,不同厂商,不同版本的虚拟机实现差别很大,HotSpot中包含的收集器如下图所示:
部分参数说明
- DefNew:Default New Generation
- Tenured:Old
- ParNew:Parallel New Generation
- PSYoungGen:Parallel Scavenge
- ParOldGen:Parallel Old Generation
Java中的Server和Client模式
使用范围:一般使用Server模式,Client模式基本不会使用
操作系统
- 32位的Window操作系统,不论硬件如何都默认使用Client的JVM模式
- 32位的其它操作系统,2G内存同时有2个cpu以上用Server模式,低于该配置还是Client模式
- 64位只有Server模式
新生代下的垃圾收集器
串行GC(Serial)
串行GC(Serial)(Serial Copying) 是一个单线程单线程的收集器,在进行垃圾收集时候,必须暂停其他所有的工作线程直到它收集结束。
串行收集器是最古老,最稳定以及效率高的收集器,只使用一个线程去回收但其在垃圾收集过程中可能会产生较长的停顿(Stop-The-World 状态)。 虽然在收集垃圾过程中需要暂停所有其它的工作线程,但是它简单高效,对于限定单个CPU环境来说,没有线程交互的开销可以获得最高的单线程垃圾收集效率,因此Serial垃圾收集器依然是Java虚拟机运行在Client模式下默认的新生代垃圾收集器
对应JVM参数是:-XX:+UseSerialGC
开启后会使用:Serial(Young区用) + Serial Old(Old区用) 的收集器组合
表示:新生代、老年代都会使用串行回收收集器,新生代使用复制算法,老年代使用标记-整理算法
-Xms10m -Xmx10m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseSerialGC
并行回收GC(Parallel)/ (Parallel Scavenge)
因为Serial 和 ParNew都不推荐使用了,因此现在新生代默认使用的是Parallel Scavenge,也就是新生代和老年代都是使用并行
Parallel Scavenge收集器类似ParNew也是一个新生代垃圾收集器,使用复制算法,也是一个并行的多线程的垃圾收集器,俗称吞吐量优先收集器。一句话:串行收集器在新生代和老年代的并行化
它关注的重点是:
可控制的吞吐量(Thoughput = 运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间) ),也即比如程序运行100分钟,垃圾收集时间1分钟,吞吐量就是99%。高吞吐量意味着高效利用CPU时间,它多用于在后台运算而不需要太多交互的任务。
自适应调节策略也是ParallelScavenge收集器与ParNew收集器的一个重要区别。(自适应调节策略:虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间( -XX:MaxGCPauseMills))或最大的吞吐量。
常用JVM参数:-XX:+UseParallelGC 或 -XX:+UseParallelOldGC(可互相激活)使用Parallel Scanvenge收集器
开启该参数后:新生代使用复制算法,老年代使用标记-整理算法
-Xms10m -Xmx10m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseParallelGC
并行GC(ParNew)
并行收集器,使用多线程进行垃圾回收,在垃圾收集,会Stop-the-World暂停其他所有的工作线程直到它收集结束
ParNew收集器其实就是Serial收集器新生代的并行多线程版本,最常见的应用场景时配合老年代的CMS GC工作,其余的行为和Serial收集器完全一样,ParNew垃圾收集器在垃圾收集过程中同样也要暂停所有其他的工作线程。它是很多Java虚拟机运行在Server模式下新生代的默认垃圾收集器。
常见对应JVM参数:-XX:+UseParNewGC 启动ParNew收集器,只影响新生代的收集,不影响老年代
开启上述参数后,会使用:ParNew(Young区用) + Serial Old的收集器组合,新生代使用复制算法,老年代采用标记-整理算法
-Xms10m -Xmx10m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseParNewGC
但是会出现警告,即 ParNew 和 Serial Old 这样搭配,Java8已经不再被推荐
备注: -XX:ParallelGCThreads 限制线程数量,默认开启和CPU数目相同的线程数
老年代下的垃圾收集器
串行GC(Serial Old)/(Serial MSC)
Serial Old是Serial垃圾收集器老年代版本,它同样是一个单线程的收集器,使用标记-整理算法,这个收集器也主要是运行在Client默认的Java虚拟机中默认的老年代垃圾收集器
在Server模式下,主要有两个用途(了解,版本已经到8及以后)
- 在JDK1.5之前版本中与新生代的Parallel Scavenge收集器搭配使用(Parallel Scavenge + Serial Old)
- 作为老年代版中使用CMS收集器的后备垃圾收集方案。
-Xms10m -Xmx10m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseSerialOldGC
该垃圾收集器,目前已经不推荐使用了
并行GC(Parallel Old)/ (Parallel MSC)
Parallel Old收集器是Parallel Scavenge的老年代版本,使用多线程的标记-整理算法,Parallel Old收集器在JDK1.6才开始提供。
在JDK1.6之前,新生代使用ParallelScavenge收集器只能搭配老年代的Serial Old收集器,只能保证新生代的吞吐量优先,无法保证整体的吞吐量。在JDK1.6以前(Parallel Scavenge + Serial Old)
Parallel Old正是为了在老年代同样提供吞吐量优先的垃圾收集器,如果系统对吞吐量要求比较高,JDK1.8后可以考虑新生代Parallel Scavenge和老年代Parallel Old 收集器的搭配策略。在JDK1.8及后(Parallel Scavenge + Parallel Old)
-XX:+UseParallelOldGC:使用Parallel Old收集器,设置该参数后,新生代Parallel+老年代 Parallel Old
-Xms10m -Xmx10m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseParallelOldGC
并发标记清除GC(CMS)
CMS收集器(Concurrent Mark Sweep:并发标记清除)是一种以最短回收停顿时间为目标的收集器
适合应用在互联网或者B/S系统的服务器上,这类应用尤其重视服务器的响应速度,希望系统停顿时间最短。
CMS非常适合堆内存大,CPU核数多的服务器端应用,也是G1出现之前大型应用的首选收集器。
Concurrent Mark Sweep:并发标记清除,并发收集低停顿,并发指的是与用户线程一起执行
开启该收集器的JVM参数: -XX:+UseConcMarkSweepGC 开启该参数后,
会自动将 -XX:+UseParNewGC打开,开启该参数后,
使用ParNew(young 区用)+ CMS(Old 区用) + Serial Old 的收集器组合,
Serial Old将作为CMS出错的后备收集器
-Xms10m -Xmx10m -XX:+PrintGCDetails -XX:+PrintCommandLineFlags -XX:+UseConcMarkSweepGC
四个步骤
- 初始标记(CMS initial mark)
- 只是标记一个GC Roots 能直接关联的对象,速度很快,仍然需要暂停所有的工作线程
- 并发标记(CMS concurrent mark)和用户线程一起
- 进行GC Roots跟踪过程,和用户线程一起工作,不需要暂停工作线程。主要标记过程,标记全部对象
- 重新标记(CMS remark)
- 为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程,由于并发标记时,用户线程依然运行,因此在正式清理前,在做修正
- 并发清除(CMS concurrent sweep)和用户线程一起
- 清除GC Roots不可达对象,和用户线程一起工作,不需要暂停工作线程。基于标记结果,直接清理对象,由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看CMS收集器的内存回收和用户线程是一起并发地执行。
优点:并发收集低停顿
缺点:并发执行,对CPU资源压力大,采用的标记清除算法会导致大量碎片
由于并发进行,CMS在收集与应用线程会同时增加对堆内存的占用,也就是说,CMS必须在老年代堆内存用尽之前完成垃圾回收,否则CMS回收失败时,将触发担保机制,串行老年代收集器将会以STW方式进行一次GC,从而造成较大的停顿时间
标记清除算法无法整理空间碎片,老年代空间会随着应用时长被逐步耗尽,最后将不得不通过担保机制对堆内存进行压缩,CMS也提供了参数 -XX:CMSFullGCSBeForeCompaction(默认0,即每次都进行内存整理)来指定多少次CMS收集之后,进行一次压缩的Full GC
为什么新生代采用复制算法,老年代采用标记整理算法
新生代使用复制算法
因为新生代对象的生存时间比较短,80%的都要回收的对象,采用标记-清除算法则内存碎片化比较严重,采用复制算法可以灵活高效,且便与整理空间。
老年代采用标记整理
标记整理算法主要是为了解决标记清除算法存在内存碎片的问题,又解决了复制算法两个Survivor区的问题,因为老年代的空间比较大,不可能采用复制算法,特别占用内存空间
垃圾收集器如何选择
- 单CPU或者小内存,单机程序
- -XX:+UseSerialGC
- 多CPU,需要最大的吞吐量,如后台计算型应用
- -XX:+UseParallelGC(这两个相互激活)
- -XX:+UseParallelOldGC
- 多CPU,追求低停顿时间,需要快速响应如互联网应用
- -XX:+UseConcMarkSweepGC
开启-XX:+UseConcMarkSweepGC的JVM参数后,
会自动将 -XX:+UseParNewGC打开,开启该参数后,
使用ParNew(young 区用)+ CMS(Old 区用) + Serial Old 的收集器组合,
Serial Old将作为CMS出错的后备收集器