本篇文章来源于我以前的笔记整理,后续文章正在整理中
Handler,一个看起来简易的消息同步机制,应该是每个新人入门Android最先能接触到的系统核心了,我也不例外,从刚上手的生涩到现在的熟练使用,可谓是感叹良多,但是在最近的工作中,发现还有一些很多年工作经验的同学尚且不能正确的使用Handler,或者是了解其背后的机制意义,所以这里来一篇原理分析文章,普及一下正确的姿势和背后的机制原理
1、概述
Handler是Android中重要的一环,它和Binder承担了整个体系架构中的大部分的通信工作,当我们熟练掌握了Handler和Binder机制后,就相当于我们拿到了进入framework
大门的钥匙;本文主要从源码的视觉(源码基于Android8.0
),去分析Hanlder在android整个应用生命周期的运行机制,其中会穿插大量源码,我会在关键路径上写上注释,方便大家阅读
1.1 本文提纲
- Handler的基本使用
- Handler消息发布、分发流程分析
【java】
- Handler消息发布、分发流程分析
【framework】
- Handler阻塞机制
1.2 经典示例
下面展示的是一个Handler的经典示例,清晰地展示了Handler的整个流程
public class HandlerThread extends Thread {
public Handler mHandler;
public void run() {
Looper.prepare(); //-->见2.1
mHandler = new Handler() {//-->见2.3
public void handleMessage(Message msg) {
//接收消息
}
};
Looper.loop(); //-->见2.2
}
public void sendMsg(Message msg){
mHandler.sendMessage(msg);//-->见2.4
}
}
我们可以注意到这和我们日常使用的Handler有些许区别,这是因为少了Looper
这一环,在Android的主线程中,默认就已经给我们创建了Looper(见1.3),并开启了轮询。如果是在非主线程,我们直接去new Handler然后post,而不去创建Looper,那么系统就会给我们抛出一个下面这样的异常
Can't create handler inside thread that has not called Looper.prepare()
1.3 Android主线程中的Handler初始化
//android.app.ActivityThread.java
public static void main(String[] args) {
....
Looper.prepareMainLooper();//当前线程创建looper
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();//开启消息循环
throw new RuntimeException("Main thread loop unexpectedly exited");
}
系统特意为主线程looper
的创建提供了一个副本的prepareMainLooper()
方法,原理还是调用Looper.prepare()
,唯一区别是将创建的looper赋值给了一个全局静态变量
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
二、Handler消息发布、接收流程分析【java】
2.1 Looper.prepare()
prepare()默认会调用prepare(true)
,quitAllowed
参数表示此Looper是否可以退出
//Looper.java
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {//确保只初始化一次
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));//-->见2.1.1
}
此处的sThreadLocal
是包装Looper的静态常量,用来将当前looper对象保存到当前线程中,不同线程互相独立互不干涉(此处可参考ThreadLocal原理);
此处通过sThreadLocal.get()
来获取当前线程是否已经初始化过了Looper,如果是则抛出异常,如果不是,则创建一个新的Looper,然后调用ThreadLocal的set(),将实例存储起来。
2.1.1 Looper()
Looper的构造方法中默认创建了消息队列MessageQueue
//Looper.java
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);//-->见2.1.2
mThread = Thread.currentThread();//-->见2.1.3
}
2.1.2 MessageQueue()
MessageQueue构造方法中,默认调用native的函数,间接在native创建对象,并将native引用的指针保存起来,接下来的一些关于MessageQueue的操作都使用此指针,间接地去调用native创建的对象的方法,简而言之就是,MessageQueue的实现由native来负责
//MessageQueue.java
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();//-->见3.1.1
}
2.1.3 mQuitAllowed退出
MessageQueue中的quit
方法中会检查此值,false的话会抛出异常
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
}
2.2 Looper.loop()
Looper开启轮询,不断的从MessageQueue中去取消息,直到队列中没有消息了(没有消息时,MessageQueue会一直阻塞下去,直到被唤醒),这个取消息的动作是可能会被阻塞
的,当前没有消息时或者当前队列的第一条消息是延时消息时,都会被阻塞。当设置的超时时间跑完或者有新的即时(未延时)消息到来,都会被唤醒,执行下面的代码,将消息分发出去,然后将消息销毁或回收入池(这里可参考Message原理介绍)
//Looper.java
public static void loop() {
//获取当前线程存储的Looper
final Looper me = myLooper();//-->见2.2.1
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;//消息队列
//清除IPC标识,确保在做权限检查时是本地进程,而不是调用进程
Binder.clearCallingIdentity();//-->见2.2.4
final long ident = Binder.clearCallingIdentity();
for (;;) {
// 从MessageQueue取出一条消息,可能引起阻塞
Message msg = queue.next(); //-->2.2.2
if (msg == null) {//没有消息则退出循环
return;
}
final Printer logging = me.mLogging;
if (logging != null) {//可通过setMessageLogging来输出debug日志
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
//如果设置了该值,则如果消息分派花费的时间超过时间,则looper将显示一个警告日志
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);//分发消息-->见2.5
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {//打印处理消息耗时
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();//回收消息
}
}
2.2.1 myLooper()
获取当前线程存储的Looper
//Looper.java
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
2.2.2 MessageQueue.next()
获取MessageQueue队列的下一条消息 nextPollTimeoutMillis
为0立即返回,=-1则无限等待,必须要主动唤醒
//MessageQueue.java
Message next() {
final long ptr = mPtr;
//mPtr是MessageQueue保存的native对象指针,如果应用程序在退出后试图重新启动looper,
//则可能发生这种情况这是不支持的。
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {//阻塞长时间时的容错处理
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);//引起阻塞,当时间到或者被唤醒,都会返回值并结束阻塞 -->见3.2.1
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// 当消息的发送端Handler为空时,则去查询异步消息,此种情况其实就是我们所说的同步屏障-->见2.2.5
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// 如果下一条消息也是延时消息,则设置延时
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// 将当前message在保存的链中断开.并复制下一条消息
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();//标准此msg正在被使用
return msg;
}
} else {
// 没有消息则设置超时时间为-1,进行下一轮循环会阻塞
nextPollTimeoutMillis = -1;
}
//如果正在退出,则返回null,Looper也会跳出循环
if (mQuitting) {
dispose();
return null;
}
// 队列为空或第一个消息时运行
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
//可通过addIdleHandler()添加 -->见2.2.3
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// 没有回调要执行,则继续下一次循环
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// 遍历,执行回调
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();//如果返回true,则每次都会被调用,否则只会调用一次
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
2.2.3 addIdleHandler()
MessageQueue中成员变量mIdleHandlers存储回调,当消息队列里没有消息时则会被调用,我们可以此方法执行一些操作
//MessageQueue.java
private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>();
public void addIdleHandler(@NonNull IdleHandler handler) {
if (handler == null) {
throw new NullPointerException("Can't add a null IdleHandler");
}
synchronized (this) {
mIdleHandlers.add(handler);
}
}
public static interface IdleHandler {
/**
*返回true,表示每次空闲时都会被调用,返回false,表示只会调用一次
*/
boolean queueIdle();
}
2.2.4 Binder.clearCallingIdentity
clearCallingIdentity
是一个很有意思的方法,它的应用场景主要在:首先线程A通过Binder远程调用线程B,然后线程B通过Binder调用当前线程的另一个service或者activity之类的组件
- 线程A通过Binder远程调用线程B:则线程B的IPCThreadState中的mCallingUid和mCallingPid保存的就是线程A的UID和PID。这时在线程B中调用
Binder.getCallingPid()
和Binder.getCallingUid()
方法便可获取线程A的UID和PID,然后利用UID和PID进行权限比对,判断线程A是否有权限调用线程B的某个方法。 - 线程B通过Binder调用当前线程的某个组件:此时线程B是线程B某个组件的调用端,则mCallingUid和mCallingPid应该保存当前线程B的PID和UID,故需要调用
clearCallingIdentity()
方法完成这个功能。当线程B调用完某个组件,由于线程B仍然处于线程A的被调用端,因此mCallingUid和mCallingPid需要恢复成线程A的UID和PID,这是调用restoreCallingIdentity()
即可完成
2.2.5 MessageQueue中的同步屏障
Handler中的消息可以分为两种,一种是同步消息
,例如我们的UI渲染,一种是异步消息
,同步屏障的意义就如字面上所指,将同步消息拦截下来,不让其执行。起源于Android的整个视图机制都依赖于handler的同步消息,为了在view渲染的过程中,让view的渲染优先级最高,不被其它消息所影响,官方就做了这样一个处理,往messagequeue中插入一个屏障,待任务完成后再移除
void scheduleTraversals() {
if (!mTraversalScheduled) {
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
if (!mUnbufferedInputDispatch) {
scheduleConsumeBatchedInput();
}
notifyRendererOfFramePending();
pokeDrawLockIfNeeded();
}
}
void unscheduleTraversals() {
if (mTraversalScheduled) {
mTraversalScheduled = false;
mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
mChoreographer.removeCallbacks(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
}
}
有同步屏障时,只处理异步消息
Message next() {
for (;;) {
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {//只查找异步消息进行处理
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
...
}
}
可以看到当 msg.target==null时,其实就触发了同步屏障的逻辑,在Handler中,我们往MessageQueue插入消息时,都会将Handler自身赋值给target,并且MessageQueue的插入方法还判断了target的值,如果值为null会直接抛出异常,所以我们日常的使用中是触发不了同步屏障的功能的
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
}
2.3 Handler()
我们一般调用的无参的构造方法,都是使用的当前线程创建的Looper对象,Handler也有提供直接赋值Looper的构造方法,在主线程中 new Handler()==new Handler(Looper.myLooper(),null,false)
//Handler.java
public Handler() {//无参构造方法
this(null, false);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {//提示可能出现的内存泄漏
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {//在除主线程以外的线程需要先调用Looper.prepare()创建一个looper
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;//消息队列赋值
mCallback = callback;//回调
mAsynchronous = async;//是否是异步的
}
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
2.4 Handler.sendMessage()
直接发送消息,可能我们一般使用的是 post(Runnable r)
,这两个方法方法几乎是等价的,只是post指定了Message的callback,然后调用sendMessage
//Handler.java
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();//在Message池中取缓存对象
m.callback = r;//直接设置回调
return m;
}
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);//-->见2.4.1
}
2.4.1 sendMessageDelayed()
对延时时间小于0的过滤,重置为即时的消息,并在当前时间加上延时时间,重新组装调用sendMessageAtTime
//Handler.java
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);//-->见2.4.2
}
2.4.2 sendMessageAtTime()
先对MessageQueue非空判断,然后将当前对象(Handler)设置给Message消息的成员变量target[用于回调],并调用MessageQueue.enqueueMessage,将消息插入队列
//Handler.java
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);//-->见2.4.3
}
2.4.3 插入消息enqueueMessage()
//MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {//安全性判断
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {//安全性判断
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {//正在退出,则返回,并回收消息
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();//标记msg
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
//如果消息队列没有消息,或者此条msg是触发时间最早的,则直接插入链表头,
msg.next = p;
mMessages = msg;
needWake = mBlocked;//这个参数决定是否要唤醒队列,这个循环一般为true
} else {
// 将消息按时间顺序插入链表中,
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);//-->见3.3.1
}
}
return true;
}
2.4.4 唤醒 nativeWake()
当MessageQueue上一条消息是延时消息,还在延时中,或者队列中没有消息时,这个时候队列就会处于阻塞状态,此时mBlocked=true。调用nativeWake()会立即唤醒正在阻塞状态的队列,继续往下执行,本质还是调用native层的唤醒方法
2.5 分发消息 dispatchMessage(msg)
在发送消息时,默认将当前Handler对象赋值给Message消息的target变量,然后在消息分发时则通过msg.target.dispatchMessage()
来执行消息分发
//Handler.java
public void dispatchMessage(Message msg) {
if (msg.callback != null) {//post设置的回调
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
可见优先级顺序是 msg.callback > mCallback.handleMessage() > Handler.handleMessage()
2.6 退出 quit()
当我们退出应用时,系统ActivityThread中就会调用Looper.quit()
退出循环
//Lopper.java
public void quit() {
mQueue.quit(false);//-->见2.6.1
}
public void quitSafely() {
mQueue.quit(true);
}
2.6.1 mQueue.quit()
//MessageQueue.java
void quit(boolean safe) {
if (!mQuitAllowed) {//在前面Looper.prepare时设置的参数
throw new IllegalStateException("Main thread not allowed to quit.");//主线程是不允许用户自己调用退出的
}
synchronized (this) {
if (mQuitting) {//正在退出中,则返回
return;
}
mQuitting = true;
if (safe) {//是否安全移除消息
removeAllFutureMessagesLocked();//移除未触发的消息
} else {
removeAllMessagesLocked();//移除所有消息
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
2.7 总结
从上面流程分析我们可以看到Handler在消息发送,接收然后分发处理的过程。
- 当前线程创建Looper对象,并开启轮询;这个轮询会一直去
MessageQueue
中取消息,当取不到消息则会阻塞,等待被唤醒; - 调用Handler.post(msg)时,会根据此条消息的
when
字段(即是否延时),来将消息插入MessageQueue队列的头位置还是队列中的合适位置,如果是头位置则会将阻塞的位置唤醒,继续往下执行。 - 当MessageQueue空闲时,则会调用我们通过
addIdleHandler
添加的回调 - 当Looper取到消息时,则会调用按照一定的优先级去分发消息。Message.callback > Handler.mCallback.handlerMessage >Handler.handleMessage
三、Handler消息发布、接收流程分析【framework】
前面我们讲到,Handler的消息的发送和接收就是选择合适的时机发生回调的过程,这个产生回调的时间点依托于调用方是否设置了延时,而在Looper循环中我们会不断去MessageQueue中取消息,其中MessageQueue主要的实现方在native层,其中包含了如何阻塞、如何唤醒等逻辑。
MessageQueue在源码中所处的路径为
android.os.MessageQueue
。根据规范,我们可以在源码中查找 android_os_MessageQueue.cpp
文件,此文件就是java层MessageQueue对应的native实现。为什么会有这种规则呢?这个我也不清楚,反正Android源码中大致遵循了这一规范。在我们自己编写jni文件时,我们一般会有一个 System.loadLibrary(xxx)的操作,而我们在MessageQueue.java中并没有看到,这个时候你是不是会怀疑是因为根据规范路径名来对java->native来进行绑定了,答案肯定是否的,在framework中native和java方法的绑定是放在 native实现的cpp文件中的。可参考jni初始化绑定流程分析
下面就是绑定的设置
static const JNINativeMethod gMessageQueueMethods[] = {
/* name, signature, funcPtr */
{ "nativeInit", "()J", (void*)android_os_MessageQueue_nativeInit },
{ "nativeDestroy", "(J)V", (void*)android_os_MessageQueue_nativeDestroy },
{ "nativePollOnce", "(JI)V", (void*)android_os_MessageQueue_nativePollOnce },
{ "nativeWake", "(J)V", (void*)android_os_MessageQueue_nativeWake },
{ "nativeIsPolling", "(J)Z", (void*)android_os_MessageQueue_nativeIsPolling },
{ "nativeSetFileDescriptorEvents", "(JII)V",
(void*)android_os_MessageQueue_nativeSetFileDescriptorEvents },
};
下面列出的是MessageQueue中的native方法
//MessageQueue.java
private native static long nativeInit();//-->见3.1.1
private native static void nativeDestroy(long ptr);//-->见3.4.1
private native void nativePollOnce(long ptr, int timeoutMillis);//-->见3.2.1
private native static void nativeWake(long ptr);//-->见3.3.1
private native static boolean nativeIsPolling(long ptr);//-->见3.5.1
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);//-->见3.6.1
3.1.1 nativeInit()
MessageQueue.java构造函数中调用了nativeInit()来对native的MessageQueue初始化,并将对象的指针保存起来
//android_os_MessageQueue.cpp
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();//初始化 -->见3.1.2
if (!nativeMessageQueue) {
jniThrowRuntimeException(env, "Unable to allocate native queue");
return 0;
}
nativeMessageQueue->incStrong(env);//增加引用计数 -->见3.1.5
return reinterpret_cast<jlong>(nativeMessageQueue);//强转为指针地址
}
3.1.2 NativeMessageQueue
//android_os_MessageQueue.cpp
NativeMessageQueue::NativeMessageQueue() :
mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
mLooper = Looper::getForThread();//从TLS中取Looper
if (mLooper == NULL) {
mLooper = new Looper(false);//-->见3.1.3
Looper::setForThread(mLooper);//将Looper保存到TLS中
}
}
我们会发现,native中NativeMessageQueue的初始化的逻辑类似于Looper.parpare()
,都是从当前线程中去取Looper,如果不存在则创建,然后保存到当前线程对象中。其实从这里可以看出,系统的大多数举措都是殊途同归,我们理解了核心原理,其它的源码上手起来也会快很多,轻松很多,而且在此也折射出一个道理,在我们的日常开发中,怎么写代码不是关键,关键的是如何设计思路。
3.1.3 new Looper()
//Looper.cpp
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);//构造唤醒id
...
AutoMutex _l(mLock);
rebuildEpollLocked();//-->见3.1.4
}
3.1.4 rebuildEpollLocked()
重建epoll,这里涉及到epoll的使用,可参考epoll使用分析
//Looper.cpp
void Looper::rebuildEpollLocked() {
if (mEpollFd >= 0) {
close(mEpollFd);//关闭老的epoll
}
mEpollFd = epoll_create(EPOLL_SIZE_HINT);//创建epoll实例
struct epoll_event eventItem;
memset(& eventItem, 0, sizeof(epoll_event)); //初始化数据
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);//将事件添加到mEpollFd中
for (size_t i = 0; i < mRequests.size(); i++) {//将当前Looper对象中监控的文件描述符列表mRequests中的事件加入
const Request& request = mRequests.valueAt(i);
struct epoll_event eventItem;
request.initEventItem(&eventItem);
int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
}
}
从这里我们知道,在java层MessageQueue初始化后,生成了native层的NativeMessageQueue对象,并实例了native层的Looper,Looper中构造了一个唤醒mWakeEventFd,通过epoll机制监控mWakeEventFd产生的事件
3.1.5 incStrong
incStrong实现在RefBase.cpp中,在android_os_MessageQueue.h中有声明继承RefBase
。该方法职责是增加引用计数,详情可参考Android系统智能指针的设计思路
3.2.1 nativePollOnce
通过传过来MessageQueue.java中保存的指针,强转为NativeMessageQueue对象
//android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
jlong ptr, jint timeoutMillis) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->pollOnce(env, obj, timeoutMillis);//-->见3.2.2
}
3.2.2 NativeMessageQueue::pollOnce
//android_os_MessageQueue.cpp
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
mPollEnv = env;
mPollObj = pollObj;//赋值
mLooper->pollOnce(timeoutMillis);//调用Looper.pollOnce -->见3.2.3
mPollObj = NULL;//释放
mPollEnv = NULL;
if (mExceptionObj) {
env->Throw(mExceptionObj);
env->DeleteLocalRef(mExceptionObj);
mExceptionObj = NULL;
}
}
3.2.3 pollOnce()
//Looper.h
inline int pollOnce(int timeoutMillis) { 转换操作
return pollOnce(timeoutMillis, NULL, NULL, NULL);//-->见3.2.4
}
3.2.4 pollOnce()
//Looper.cpp
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {//死循环
while (mResponseIndex < mResponses.size()) {//优先处理mResponses中未处理的事件
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
if (outFd != NULL) *outFd = fd;
if (outEvents != NULL) *outEvents = events;
if (outData != NULL) *outData = data;
return ident;
}
}
if (result != 0) {//容错处理
if (outFd != NULL) *outFd = 0;
if (outEvents != NULL) *outEvents = 0;
if (outData != NULL) *outData = NULL;
return result;
}
result = pollInner(timeoutMillis);//-->见3.2.5
}
}
3.2.5 pollInner()
我们可以知道,在MessageQueue.java中的nativePollOnce最终的实现就在Looper.cpp中的pollInner中,这里会根据超时时间调用epoll_wait来进行阻塞。阻塞结束则回先处理NativeMessage回调,request中的回调,然后返回状态码
状态码如下 对于app开发者来说,下面这些状态可能不需要关心,因为我们知道方法返回了,这个时候是从挂起状态回来了,
- POLL_WAKE = -1, 只是被唤醒
- POLL_CALLBACK = -2, 本地msg事件回调
- POLL_TIMEOUT = -3,超时
- POLL_ERROR = -4,错误
//Looper.cpp
int Looper::pollInner(int timeoutMillis) {
//根据下一条消息的到期时间调整超时时间
if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
if (messageTimeoutMillis >= 0
&& (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
timeoutMillis = messageTimeoutMillis;
}
}
int result = POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
//当前快要被挂起
mPolling = true;
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
//等待超时或者文件描述符有事件写入(向管道写入字符则该方法返回)
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// 结束挂起状态
mPolling = false;
mLock.lock();
// 判断是否需要重新构建epoll实例
if (mEpollRebuildRequired) {
mEpollRebuildRequired = false;
rebuildEpollLocked();
goto Done;
}
// 检查是否发生错误.
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
result = POLL_ERROR;
goto Done;
}
// 检查是否超时
if (eventCount == 0) {
result = POLL_TIMEOUT;
goto Done;
}
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
if (fd == mWakeEventFd) {
if (epollEvents & EPOLLIN) {
awoken();//已经唤醒则清空管道(读取管道中写入的字符)-->见3.2.6
} else {
}
} else {//处理request,生成response并加入mResponses数组,在Done中再处理回调
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
pushResponse(events, mRequests.valueAt(requestIndex));
} else {
}
}
}
Done: ;
// 处理native的message,调用回调
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
//处理回调,
{ // obtain handler
sp<MessageHandler> handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
result = POLL_CALLBACK;
} else {
// 下一个消息的唤醒时间
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// 执行mResponses中的回调
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd, response.request.seq);
}
response.request.callback.clear();
result = POLL_CALLBACK;
}
}
return result;
}
3.2.6 awoken()
目的是不断读取管道中的数据,从而达到清空管道的作用
void Looper::awoken() {
uint64_t counter;
TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}
3.3.1 nativeWake
调用NativeMessageQueue的wake方法
//android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->wake();//-->见3.3.2
}
3.3.2 wake()
调用Looper.wake()
void NativeMessageQueue::wake() {
mLooper->wake();//-->见3.3.3
}
3.3.3 Looper.wake()
往管道中写入一个字符,则管道的另一端就会被唤醒,
void Looper::wake() {
uint64_t inc = 1;
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
mWakeEventFd, strerror(errno));
}
}
}
3.4.1 nativeDestroy
static void android_os_MessageQueue_nativeDestroy(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->decStrong(env);//-->见3.4.2
}
3.4.2 desStrong()
这与NativeMessageQueue构造函数中调用的incStrong相呼应,当NativeMessageQueue引用计数为0时则会被销毁
void RefBase::decStrong(const void* id) const
{
weakref_impl* const refs = mRefs;
refs->removeStrongRef(id);
const int32_t c = refs->mStrong.fetch_sub(1, std::memory_order_release);
if (c == 1) {
std::atomic_thread_fence(std::memory_order_acquire);
refs->mBase->onLastStrongRef(id);
int32_t flags = refs->mFlags.load(std::memory_order_relaxed);
if ((flags&OBJECT_LIFETIME_MASK) == OBJECT_LIFETIME_STRONG) {
delete this;
// The destructor does not delete refs in this case.
}
}
refs->decWeak(id);
}
3.5.1 nativeIsPolling()
直接调用Looper.isPolling。直接返回在pollOnce中赋值的mPolling常量,当在阻塞中时返回true,当空闲则返回false
static jboolean android_os_MessageQueue_nativeIsPolling(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
return nativeMessageQueue->getLooper()->isPolling();
}
bool Looper::isPolling() const {
return mPolling;
}
3.6.1 nativeSetFileDescriptorEvents()
添加一个fd文件描述符的监听
static void android_os_MessageQueue_nativeSetFileDescriptorEvents(JNIEnv* env, jclass clazz,
jlong ptr, jint fd, jint events) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->setFileDescriptorEvents(fd, events);//-->见3.6.2
}
3.6.2 setFileDescripetorEvents
void NativeMessageQueue::setFileDescriptorEvents(int fd, int events) {
if (events) {
int looperEvents = 0;
if (events & CALLBACK_EVENT_INPUT) {
looperEvents |= Looper::EVENT_INPUT;
}
if (events & CALLBACK_EVENT_OUTPUT) {
looperEvents |= Looper::EVENT_OUTPUT;
}
mLooper->addFd(fd, Looper::POLL_CALLBACK, looperEvents, this,
reinterpret_cast<void*>(events));
} else {
mLooper->removeFd(fd);
}
}
总结
MessageQueue native层的实现其实并不是很复杂,它的核心逻辑都由epoll来完成,有点类似于观察者与被观察者模式,监听eqfd,eqfd有事件发生,wait则会被唤醒。而且对比java层和Native层的实现可知,他们的整体设计差不多一样,都是messagequeue、looper、handler、callback来支持整体的运行,差不多我们可以看做是在两个平台各实现了一套自己的消息机制。
引用及拓展知识
阅读本文可以去查阅下以下资料,也可以直接在我的博文列表里查找
因为是整理的草稿里的笔记,下面的引用都找不到链接了,大家有兴趣的可以拿标题去搜索下
- ThreadLocal源码浅析
- Message源码浅析
- epoll的机制
- jni初始化绑定流程分析
- 关于Binder中clearCallingIdentity()与restoreCallingIdentity()的作用及如何实现权限认证
- Android消息机制2-Handler(Native层)
- Android系统智能指针的设计思路