Android重学系列(二):Handler之从Java到Native

488 阅读16分钟

本篇文章来源于我以前的笔记整理,后续文章正在整理中

Handler,一个看起来简易的消息同步机制,应该是每个新人入门Android最先能接触到的系统核心了,我也不例外,从刚上手的生涩到现在的熟练使用,可谓是感叹良多,但是在最近的工作中,发现还有一些很多年工作经验的同学尚且不能正确的使用Handler,或者是了解其背后的机制意义,所以这里来一篇原理分析文章,普及一下正确的姿势和背后的机制原理

1、概述

Handler是Android中重要的一环,它和Binder承担了整个体系架构中的大部分的通信工作,当我们熟练掌握了Handler和Binder机制后,就相当于我们拿到了进入framework大门的钥匙;本文主要从源码的视觉(源码基于Android8.0),去分析Hanlder在android整个应用生命周期的运行机制,其中会穿插大量源码,我会在关键路径上写上注释,方便大家阅读

1.1 本文提纲

  • Handler的基本使用
  • Handler消息发布、分发流程分析【java】
  • Handler消息发布、分发流程分析【framework】
  • Handler阻塞机制

1.2 经典示例

image.png 下面展示的是一个Handler的经典示例,清晰地展示了Handler的整个流程

public class HandlerThread extends Thread {
    public Handler mHandler;

    public void run() {
        Looper.prepare(); //-->见2.1

        mHandler = new Handler() {//-->见2.3
            public void handleMessage(Message msg) {
               //接收消息
            }
        };

        Looper.loop(); //-->见2.2
    }
    
    public void sendMsg(Message msg){
        mHandler.sendMessage(msg);//-->见2.4
    }
}

我们可以注意到这和我们日常使用的Handler有些许区别,这是因为少了Looper这一环,在Android的主线程中,默认就已经给我们创建了Looper(见1.3),并开启了轮询。如果是在非主线程,我们直接去new Handler然后post,而不去创建Looper,那么系统就会给我们抛出一个下面这样的异常

Can't create handler inside thread that has not called Looper.prepare()

1.3 Android主线程中的Handler初始化

//android.app.ActivityThread.java
 public static void main(String[] args) {
        ....

        Looper.prepareMainLooper();//当前线程创建looper

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();//开启消息循环

        throw new RuntimeException("Main thread loop unexpectedly exited");
}

系统特意为主线程looper的创建提供了一个副本的prepareMainLooper()方法,原理还是调用Looper.prepare(),唯一区别是将创建的looper赋值给了一个全局静态变量

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
}

二、Handler消息发布、接收流程分析【java】

2.1 Looper.prepare()

prepare()默认会调用prepare(true),quitAllowed参数表示此Looper是否可以退出

//Looper.java
 private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {//确保只初始化一次
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));//-->见2.1.1
 }

此处的sThreadLocal是包装Looper的静态常量,用来将当前looper对象保存到当前线程中,不同线程互相独立互不干涉(此处可参考ThreadLocal原理);

此处通过sThreadLocal.get()来获取当前线程是否已经初始化过了Looper,如果是则抛出异常,如果不是,则创建一个新的Looper,然后调用ThreadLocal的set(),将实例存储起来。

2.1.1 Looper()

Looper的构造方法中默认创建了消息队列MessageQueue

//Looper.java
private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);//-->见2.1.2
        mThread = Thread.currentThread();//-->见2.1.3
    }

2.1.2 MessageQueue()

MessageQueue构造方法中,默认调用native的函数,间接在native创建对象,并将native引用的指针保存起来,接下来的一些关于MessageQueue的操作都使用此指针,间接地去调用native创建的对象的方法,简而言之就是,MessageQueue的实现由native来负责

//MessageQueue.java
MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();//-->见3.1.1
    }

2.1.3 mQuitAllowed退出

MessageQueue中的quit方法中会检查此值,false的话会抛出异常

void quit(boolean safe) {
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }
}

2.2 Looper.loop()

Looper开启轮询,不断的从MessageQueue中去取消息,直到队列中没有消息了(没有消息时,MessageQueue会一直阻塞下去,直到被唤醒),这个取消息的动作是可能会被阻塞的,当前没有消息时或者当前队列的第一条消息是延时消息时,都会被阻塞。当设置的超时时间跑完或者有新的即时(未延时)消息到来,都会被唤醒,执行下面的代码,将消息分发出去,然后将消息销毁或回收入池(这里可参考Message原理介绍)

//Looper.java
public static void loop() {
        //获取当前线程存储的Looper
        final Looper me = myLooper();//-->见2.2.1
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;//消息队列
        //清除IPC标识,确保在做权限检查时是本地进程,而不是调用进程
        Binder.clearCallingIdentity();//-->见2.2.4
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
              // 从MessageQueue取出一条消息,可能引起阻塞
            Message msg = queue.next(); //-->2.2.2
            if (msg == null) {//没有消息则退出循环
                return;
            }
            final Printer logging = me.mLogging;
            if (logging != null) {//可通过setMessageLogging来输出debug日志
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            //如果设置了该值,则如果消息分派花费的时间超过时间,则looper将显示一个警告日志
            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);//分发消息-->见2.5
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {//打印处理消息耗时
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();//回收消息
        }
    }

2.2.1 myLooper()

获取当前线程存储的Looper

//Looper.java
 public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }

2.2.2 MessageQueue.next()

获取MessageQueue队列的下一条消息 nextPollTimeoutMillis为0立即返回,=-1则无限等待,必须要主动唤醒

//MessageQueue.java
Message next() {
        final long ptr = mPtr;
        //mPtr是MessageQueue保存的native对象指针,如果应用程序在退出后试图重新启动looper,
        //则可能发生这种情况这是不支持的。
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {//阻塞长时间时的容错处理
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);//引起阻塞,当时间到或者被唤醒,都会返回值并结束阻塞 -->见3.2.1

            synchronized (this) {
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // 当消息的发送端Handler为空时,则去查询异步消息,此种情况其实就是我们所说的同步屏障-->见2.2.5
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // 如果下一条消息也是延时消息,则设置延时
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // 将当前message在保存的链中断开.并复制下一条消息
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();//标准此msg正在被使用
                        return msg;
                    }
                } else {
                    // 没有消息则设置超时时间为-1,进行下一轮循环会阻塞
                    nextPollTimeoutMillis = -1;
                }

                //如果正在退出,则返回null,Looper也会跳出循环
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // 队列为空或第一个消息时运行
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                   //可通过addIdleHandler()添加 -->见2.2.3
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // 没有回调要执行,则继续下一次循环
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            //  遍历,执行回调
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();//如果返回true,则每次都会被调用,否则只会调用一次
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

2.2.3 addIdleHandler()

MessageQueue中成员变量mIdleHandlers存储回调,当消息队列里没有消息时则会被调用,我们可以此方法执行一些操作

//MessageQueue.java
 private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>();
 public void addIdleHandler(@NonNull IdleHandler handler) {
        if (handler == null) {
            throw new NullPointerException("Can't add a null IdleHandler");
        }
        synchronized (this) {
            mIdleHandlers.add(handler);
        }
    }
    
 public static interface IdleHandler {
        /**
         *返回true,表示每次空闲时都会被调用,返回false,表示只会调用一次
         */
        boolean queueIdle();
    }

2.2.4 Binder.clearCallingIdentity

clearCallingIdentity是一个很有意思的方法,它的应用场景主要在:首先线程A通过Binder远程调用线程B,然后线程B通过Binder调用当前线程的另一个service或者activity之类的组件

  1. 线程A通过Binder远程调用线程B:则线程B的IPCThreadState中的mCallingUid和mCallingPid保存的就是线程A的UID和PID。这时在线程B中调用Binder.getCallingPid()Binder.getCallingUid()方法便可获取线程A的UID和PID,然后利用UID和PID进行权限比对,判断线程A是否有权限调用线程B的某个方法。
  2. 线程B通过Binder调用当前线程的某个组件:此时线程B是线程B某个组件的调用端,则mCallingUid和mCallingPid应该保存当前线程B的PID和UID,故需要调用clearCallingIdentity()方法完成这个功能。当线程B调用完某个组件,由于线程B仍然处于线程A的被调用端,因此mCallingUid和mCallingPid需要恢复成线程A的UID和PID,这是调用restoreCallingIdentity()即可完成

2.2.5 MessageQueue中的同步屏障

Handler中的消息可以分为两种,一种是同步消息,例如我们的UI渲染,一种是异步消息,同步屏障的意义就如字面上所指,将同步消息拦截下来,不让其执行。起源于Android的整个视图机制都依赖于handler的同步消息,为了在view渲染的过程中,让view的渲染优先级最高,不被其它消息所影响,官方就做了这样一个处理,往messagequeue中插入一个屏障,待任务完成后再移除

void scheduleTraversals() {
        if (!mTraversalScheduled) {
            mTraversalScheduled = true;
            mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
            if (!mUnbufferedInputDispatch) {
                scheduleConsumeBatchedInput();
            }
            notifyRendererOfFramePending();
            pokeDrawLockIfNeeded();
        }
    }

    void unscheduleTraversals() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
            mChoreographer.removeCallbacks(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        }
    }

有同步屏障时,只处理异步消息

Message next() {
        for (;;) {
            synchronized (this) {
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {//只查找异步消息进行处理
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
               ...
        }
    }

可以看到当 msg.target==null时,其实就触发了同步屏障的逻辑,在Handler中,我们往MessageQueue插入消息时,都会将Handler自身赋值给target,并且MessageQueue的插入方法还判断了target的值,如果值为null会直接抛出异常,所以我们日常的使用中是触发不了同步屏障的功能的

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
}

2.3 Handler()

我们一般调用的无参的构造方法,都是使用的当前线程创建的Looper对象,Handler也有提供直接赋值Looper的构造方法,在主线程中 new Handler()==new Handler(Looper.myLooper(),null,false)

//Handler.java
public Handler() {//无参构造方法
    this(null, false);
}
public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {//提示可能出现的内存泄漏
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {//在除主线程以外的线程需要先调用Looper.prepare()创建一个looper
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;//消息队列赋值
        mCallback = callback;//回调
        mAsynchronous = async;//是否是异步的
    }
public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
}

2.4 Handler.sendMessage()

直接发送消息,可能我们一般使用的是 post(Runnable r),这两个方法方法几乎是等价的,只是post指定了Message的callback,然后调用sendMessage

//Handler.java
 public final boolean post(Runnable r)
{
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();//在Message池中取缓存对象
        m.callback = r;//直接设置回调
        return m;
    }

public final boolean sendMessage(Message msg)
{
        return sendMessageDelayed(msg, 0);//-->见2.4.1
    }

2.4.1 sendMessageDelayed()

对延时时间小于0的过滤,重置为即时的消息,并在当前时间加上延时时间,重新组装调用sendMessageAtTime

//Handler.java
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);//-->见2.4.2
    }

2.4.2 sendMessageAtTime()

先对MessageQueue非空判断,然后将当前对象(Handler)设置给Message消息的成员变量target[用于回调],并调用MessageQueue.enqueueMessage,将消息插入队列

//Handler.java
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);//-->见2.4.3
    }

2.4.3 插入消息enqueueMessage()

//MessageQueue.java
 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {//安全性判断
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {//安全性判断
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {//正在退出,则返回,并回收消息
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();//标记msg
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                //如果消息队列没有消息,或者此条msg是触发时间最早的,则直接插入链表头,
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;//这个参数决定是否要唤醒队列,这个循环一般为true
            } else {
                // 将消息按时间顺序插入链表中,
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);//-->见3.3.1
            }
        }
        return true;
    }

2.4.4 唤醒 nativeWake()

当MessageQueue上一条消息是延时消息,还在延时中,或者队列中没有消息时,这个时候队列就会处于阻塞状态,此时mBlocked=true。调用nativeWake()会立即唤醒正在阻塞状态的队列,继续往下执行,本质还是调用native层的唤醒方法

2.5 分发消息 dispatchMessage(msg)

在发送消息时,默认将当前Handler对象赋值给Message消息的target变量,然后在消息分发时则通过msg.target.dispatchMessage()来执行消息分发

//Handler.java
  public void dispatchMessage(Message msg) {
        if (msg.callback != null) {//post设置的回调
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

可见优先级顺序是 msg.callback > mCallback.handleMessage() > Handler.handleMessage()

2.6 退出 quit()

当我们退出应用时,系统ActivityThread中就会调用Looper.quit()退出循环

//Lopper.java
 public void quit() {
        mQueue.quit(false);//-->见2.6.1
    }
 public void quitSafely() {
        mQueue.quit(true);
    }

2.6.1 mQueue.quit()

//MessageQueue.java
void quit(boolean safe) {
        if (!mQuitAllowed) {//在前面Looper.prepare时设置的参数
            throw new IllegalStateException("Main thread not allowed to quit.");//主线程是不允许用户自己调用退出的
        }

        synchronized (this) {
            if (mQuitting) {//正在退出中,则返回
                return;
            }
            mQuitting = true;

            if (safe) {//是否安全移除消息
                removeAllFutureMessagesLocked();//移除未触发的消息
            } else {
                removeAllMessagesLocked();//移除所有消息
            }

            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);
        }
    }

2.7 总结

从上面流程分析我们可以看到Handler在消息发送,接收然后分发处理的过程。

  • 当前线程创建Looper对象,并开启轮询;这个轮询会一直去MessageQueue中取消息,当取不到消息则会阻塞,等待被唤醒;
  • 调用Handler.post(msg)时,会根据此条消息的when字段(即是否延时),来将消息插入MessageQueue队列的头位置还是队列中的合适位置,如果是头位置则会将阻塞的位置唤醒,继续往下执行。
  • 当MessageQueue空闲时,则会调用我们通过addIdleHandler添加的回调
  • 当Looper取到消息时,则会调用按照一定的优先级去分发消息。Message.callback > Handler.mCallback.handlerMessage >Handler.handleMessage

三、Handler消息发布、接收流程分析【framework】

前面我们讲到,Handler的消息的发送和接收就是选择合适的时机发生回调的过程,这个产生回调的时间点依托于调用方是否设置了延时,而在Looper循环中我们会不断去MessageQueue中取消息,其中MessageQueue主要的实现方在native层,其中包含了如何阻塞、如何唤醒等逻辑。

image.png MessageQueue在源码中所处的路径为 android.os.MessageQueue。根据规范,我们可以在源码中查找 android_os_MessageQueue.cpp文件,此文件就是java层MessageQueue对应的native实现。为什么会有这种规则呢?这个我也不清楚,反正Android源码中大致遵循了这一规范。在我们自己编写jni文件时,我们一般会有一个 System.loadLibrary(xxx)的操作,而我们在MessageQueue.java中并没有看到,这个时候你是不是会怀疑是因为根据规范路径名来对java->native来进行绑定了,答案肯定是否的,在framework中native和java方法的绑定是放在 native实现的cpp文件中的。可参考jni初始化绑定流程分析

下面就是绑定的设置
static const JNINativeMethod gMessageQueueMethods[] = {
    /* name, signature, funcPtr */
    { "nativeInit", "()J", (void*)android_os_MessageQueue_nativeInit },
    { "nativeDestroy", "(J)V", (void*)android_os_MessageQueue_nativeDestroy },
    { "nativePollOnce", "(JI)V", (void*)android_os_MessageQueue_nativePollOnce },
    { "nativeWake", "(J)V", (void*)android_os_MessageQueue_nativeWake },
    { "nativeIsPolling", "(J)Z", (void*)android_os_MessageQueue_nativeIsPolling },
    { "nativeSetFileDescriptorEvents", "(JII)V",
            (void*)android_os_MessageQueue_nativeSetFileDescriptorEvents },
};

下面列出的是MessageQueue中的native方法

//MessageQueue.java
    private native static long nativeInit();//-->见3.1.1
    private native static void nativeDestroy(long ptr);//-->见3.4.1
    private native void nativePollOnce(long ptr, int timeoutMillis);//-->见3.2.1 
    private native static void nativeWake(long ptr);//-->见3.3.1
    private native static boolean nativeIsPolling(long ptr);//-->见3.5.1
    private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);//-->见3.6.1

3.1.1 nativeInit()

MessageQueue.java构造函数中调用了nativeInit()来对native的MessageQueue初始化,并将对象的指针保存起来

//android_os_MessageQueue.cpp
static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();//初始化 -->见3.1.2
    if (!nativeMessageQueue) {
        jniThrowRuntimeException(env, "Unable to allocate native queue");
        return 0;
    }

    nativeMessageQueue->incStrong(env);//增加引用计数 -->见3.1.5
    return reinterpret_cast<jlong>(nativeMessageQueue);//强转为指针地址
}

3.1.2 NativeMessageQueue

//android_os_MessageQueue.cpp
NativeMessageQueue::NativeMessageQueue() :
        mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
    mLooper = Looper::getForThread();//从TLS中取Looper
    if (mLooper == NULL) {
        mLooper = new Looper(false);//-->见3.1.3
        Looper::setForThread(mLooper);//将Looper保存到TLS中
    }
}

我们会发现,native中NativeMessageQueue的初始化的逻辑类似于Looper.parpare(),都是从当前线程中去取Looper,如果不存在则创建,然后保存到当前线程对象中。其实从这里可以看出,系统的大多数举措都是殊途同归,我们理解了核心原理,其它的源码上手起来也会快很多,轻松很多,而且在此也折射出一个道理,在我们的日常开发中,怎么写代码不是关键,关键的是如何设计思路。

3.1.3 new Looper()

//Looper.cpp
Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);//构造唤醒id
    ...
    AutoMutex _l(mLock);
    rebuildEpollLocked();//-->见3.1.4
}

3.1.4 rebuildEpollLocked()

重建epoll,这里涉及到epoll的使用,可参考epoll使用分析

//Looper.cpp
void Looper::rebuildEpollLocked() {
   if (mEpollFd >= 0) {
        close(mEpollFd);//关闭老的epoll
    }
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);//创建epoll实例

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); //初始化数据
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);//将事件添加到mEpollFd中

    for (size_t i = 0; i < mRequests.size(); i++) {//将当前Looper对象中监控的文件描述符列表mRequests中的事件加入
        const Request& request = mRequests.valueAt(i);
        struct epoll_event eventItem;
        request.initEventItem(&eventItem);

        int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
    }
}

从这里我们知道,在java层MessageQueue初始化后,生成了native层的NativeMessageQueue对象,并实例了native层的Looper,Looper中构造了一个唤醒mWakeEventFd,通过epoll机制监控mWakeEventFd产生的事件

3.1.5 incStrong

incStrong实现在RefBase.cpp中,在android_os_MessageQueue.h中有声明继承RefBase。该方法职责是增加引用计数,详情可参考Android系统智能指针的设计思路

3.2.1 nativePollOnce

通过传过来MessageQueue.java中保存的指针,强转为NativeMessageQueue对象

//android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);//-->见3.2.2
}

3.2.2 NativeMessageQueue::pollOnce

//android_os_MessageQueue.cpp
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;//赋值
    mLooper->pollOnce(timeoutMillis);//调用Looper.pollOnce -->见3.2.3
    mPollObj = NULL;//释放
    mPollEnv = NULL;

    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}

3.2.3 pollOnce()

//Looper.h
inline int pollOnce(int timeoutMillis) { 转换操作
        return pollOnce(timeoutMillis, NULL, NULL, NULL);//-->见3.2.4
    }

3.2.4 pollOnce()

//Looper.cpp
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {//死循环
        while (mResponseIndex < mResponses.size()) {//优先处理mResponses中未处理的事件
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }

        if (result != 0) {//容错处理
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }

        result = pollInner(timeoutMillis);//-->见3.2.5
    }
}

3.2.5 pollInner()

我们可以知道,在MessageQueue.java中的nativePollOnce最终的实现就在Looper.cpp中的pollInner中,这里会根据超时时间调用epoll_wait来进行阻塞。阻塞结束则回先处理NativeMessage回调,request中的回调,然后返回状态码

状态码如下 对于app开发者来说,下面这些状态可能不需要关心,因为我们知道方法返回了,这个时候是从挂起状态回来了,

  • POLL_WAKE = -1, 只是被唤醒
  • POLL_CALLBACK = -2, 本地msg事件回调
  • POLL_TIMEOUT = -3,超时
  • POLL_ERROR = -4,错误
//Looper.cpp
int Looper::pollInner(int timeoutMillis) {
    //根据下一条消息的到期时间调整超时时间
    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
        if (messageTimeoutMillis >= 0
                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
            timeoutMillis = messageTimeoutMillis;
        }

    }

    int result = POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    //当前快要被挂起
    mPolling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    //等待超时或者文件描述符有事件写入(向管道写入字符则该方法返回)
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

    // 结束挂起状态
    mPolling = false;

    mLock.lock();

    // 判断是否需要重新构建epoll实例
    if (mEpollRebuildRequired) {
        mEpollRebuildRequired = false;
        rebuildEpollLocked();
        goto Done;
    }

    // 检查是否发生错误.
    if (eventCount < 0) {
        if (errno == EINTR) {
            goto Done;
        }
        ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
        result = POLL_ERROR;
        goto Done;
    }

    // 检查是否超时
    if (eventCount == 0) {
        result = POLL_TIMEOUT;
        goto Done;
    }

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                awoken();//已经唤醒则清空管道(读取管道中写入的字符)-->见3.2.6
            } else {
               
            }
        } else {//处理request,生成response并加入mResponses数组,在Done中再处理回调
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                
            }
        }
    }
Done: ;

    // 处理native的message,调用回调
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
          //处理回调,
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // 下一个消息的唤醒时间
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

    // Release lock.
    mLock.unlock();

    // 执行mResponses中的回调
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
           
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    return result;
}

3.2.6 awoken()

目的是不断读取管道中的数据,从而达到清空管道的作用

void Looper::awoken() {
    uint64_t counter;
    TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}

3.3.1 nativeWake

调用NativeMessageQueue的wake方法

//android_os_MessageQueue.cpp
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->wake();//-->见3.3.2
}

3.3.2 wake()

调用Looper.wake()

void NativeMessageQueue::wake() {
    mLooper->wake();//-->见3.3.3
}

3.3.3 Looper.wake()

往管道中写入一个字符,则管道的另一端就会被唤醒,

void Looper::wake() {
    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
                    mWakeEventFd, strerror(errno));
        }
    }
}

3.4.1 nativeDestroy

static void android_os_MessageQueue_nativeDestroy(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->decStrong(env);//-->见3.4.2
}

3.4.2 desStrong()

这与NativeMessageQueue构造函数中调用的incStrong相呼应,当NativeMessageQueue引用计数为0时则会被销毁

void RefBase::decStrong(const void* id) const
{
    weakref_impl* const refs = mRefs;
    refs->removeStrongRef(id);
    const int32_t c = refs->mStrong.fetch_sub(1, std::memory_order_release);

    if (c == 1) {
        std::atomic_thread_fence(std::memory_order_acquire);
        refs->mBase->onLastStrongRef(id);
        int32_t flags = refs->mFlags.load(std::memory_order_relaxed);
        if ((flags&OBJECT_LIFETIME_MASK) == OBJECT_LIFETIME_STRONG) {
            delete this;
            // The destructor does not delete refs in this case.
        }
    }
    refs->decWeak(id);
}

3.5.1 nativeIsPolling()

直接调用Looper.isPolling。直接返回在pollOnce中赋值的mPolling常量,当在阻塞中时返回true,当空闲则返回false

static jboolean android_os_MessageQueue_nativeIsPolling(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    return nativeMessageQueue->getLooper()->isPolling();
}
bool Looper::isPolling() const {
    return mPolling;
}

3.6.1 nativeSetFileDescriptorEvents()

添加一个fd文件描述符的监听

static void android_os_MessageQueue_nativeSetFileDescriptorEvents(JNIEnv* env, jclass clazz,
        jlong ptr, jint fd, jint events) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->setFileDescriptorEvents(fd, events);//-->见3.6.2
}

3.6.2 setFileDescripetorEvents

void NativeMessageQueue::setFileDescriptorEvents(int fd, int events) {
    if (events) {
        int looperEvents = 0;
        if (events & CALLBACK_EVENT_INPUT) {
            looperEvents |= Looper::EVENT_INPUT;
        }
        if (events & CALLBACK_EVENT_OUTPUT) {
            looperEvents |= Looper::EVENT_OUTPUT;
        }
        mLooper->addFd(fd, Looper::POLL_CALLBACK, looperEvents, this,
                reinterpret_cast<void*>(events));
    } else {
        mLooper->removeFd(fd);
    }
}

总结

MessageQueue native层的实现其实并不是很复杂,它的核心逻辑都由epoll来完成,有点类似于观察者与被观察者模式,监听eqfd,eqfd有事件发生,wait则会被唤醒。而且对比java层和Native层的实现可知,他们的整体设计差不多一样,都是messagequeue、looper、handler、callback来支持整体的运行,差不多我们可以看做是在两个平台各实现了一套自己的消息机制。

引用及拓展知识

阅读本文可以去查阅下以下资料,也可以直接在我的博文列表里查找

因为是整理的草稿里的笔记,下面的引用都找不到链接了,大家有兴趣的可以拿标题去搜索下

  • ThreadLocal源码浅析
  • Message源码浅析
  • epoll的机制
  • jni初始化绑定流程分析
  • 关于Binder中clearCallingIdentity()与restoreCallingIdentity()的作用及如何实现权限认证
  • Android消息机制2-Handler(Native层)
  • Android系统智能指针的设计思路