携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第28天,点击查看活动详情
题目
小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。
除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。
给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。
示例 1
输入: root = [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7
示例 2
输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9
提示
- 树的节点数在
[1, 104]范围内 0 <= Node.val <= 10^4
题解
思路
我们使用爷爷、两个孩子、4 个孙子来说明问题
首先来定义这个问题的状态,爷爷节点获取到最大的偷取的钱数呢
首先要明确相邻的节点不能偷,也就是爷爷选择偷,儿子就不能偷了,但是孙子可以偷 二叉树只有左右两个孩子,一个爷爷最多 2 个儿子,4 个孙子 根据以上条件,我们可以得出单个节点的钱该怎么算 4 个孙子偷的钱 + 爷爷的钱 VS 两个儿子偷的钱 哪个组合钱多,就当做当前节点能偷的最大钱数。这就是动态规划里面的最优子结构
由于是二叉树,这里可以选择计算所有子节点
4 个孙子投的钱加上爷爷的钱如下
int method1 = root.val + rob(root.left.left) + rob(root.left.right) + rob(root.right.left) + rob(root.right.right)
两个儿子偷的钱如下
int method2 = rob(root.left) + rob(root.right);
挑选一个钱数多的方案则
int result = Math.max(method1, method2);
代码
public int rob(TreeNode root) {
if (root == null) return 0;
int money = root.val;
if (root.left != null) {
money += (rob(root.left.left) + rob(root.left.right));
}
if (root.right != null) {
money += (rob(root.right.left) + rob(root.right.right));
}
return Math.max(money, rob(root.left) + rob(root.right));
}
结语
业精于勤,荒于嬉;行成于思,毁于随。