简易分布式存储系统项目准备4|青训营笔记

104 阅读4分钟

这是我参与「第四届青训营 」笔记创作活动的的第5天 这是青训营课程小组将要涉及的项目。

Namenode

Namenode是HDFS集群主节点,负责管理整个文件系统的元数据,所有的读写请求都要经过Namenode。

元数据管理

Namenode对元数据的管理采用了三种形式:

1) 内存元数据:基于内存存储元数据,元数据比较完整

2) fsimage文件:磁盘元数据镜像文件,在NameNode工作目录中,它不包含block所在的Datanode 信息

3) edits文件:数据操作日志文件,用于衔接内存元数据和fsimage之间的操作日志,可通过日志运算出元数据

fsimage + edits = 内存元数据

注意:当客户端对hdfs中的文件进行新增或修改时,操作记录首先被记入edit日志文件,当客户端操作成功后,相应的元数据会更新到内存元数据中

可以通过hdfs的一个工具来查看edits中的信息bin/hdfs  oev  -i  edits  -o  edits.xml查看fsimagebin/hdfs  oiv  -i  fsimage_0000000000000000087  -p  XML  -o  fsimage.xml

元数据的checkpoint(非HA模式)

Secondary Namenode每隔一段时间会检查Namenode上的fsimage和edits文件是否需要合并,如触发设置的条件就开始下载最新的fsimage和所有的edits文件到本地,并加载到内存中进行合并,然后将合并之后获得的新的fsimage上传到Namenode。checkpoint操作的触发条件主要配置参数:

dfs.namenode.checkpoint.check.period=60  #检查触发条件是否满足的频率,单位秒dfs.namenode.checkpoint.dir=file://hadoop.tmp.dir/dfs/namesecondarydfs.namenode.checkpoint.edits.dir={hadoop.tmp.dir}/dfs/namesecondarydfs.namenode.checkpoint.edits.dir={dfs.namenode.checkpoint.dir}#以上两个参数做checkpoint操作时,secondary namenode的本地工作目录,主要处理fsimage和edits文件的dfs.namenode.checkpoint.max-retries=3  #最大重试次数dfs.namenode.checkpoint.period=3600  #两次checkpoint之间的时间间隔3600秒dfs.namenode.checkpoint.txns=1000000  #两次checkpoint之间最大的操作记录

checkpoint 作用

1. 加快Namenode启动Namenode启动时,会合并磁盘上的fsimage文件和edits文件,得到完整的元数据信息,但如果fsimage和edits文件非常大,这个合并过程就会非常慢,导致HDFS长时间处于安全模式中而无法正常提供服务。SecondaryNamenode的checkpoint机制可以缓解这一问题2. 数据恢复Namenode和SecondaryNamenode的工作目录存储结构完全相同,当Namenode故障退出需要重新恢复时,可以从SecondaryNamenode的工作目录中将fsimage拷贝到Namenode的工作目录,以恢复Namenode的元数据。但是SecondaryNamenode最后一次合并之后的更新操作的元数据将会丢失,最好Namenode元数据的文件夹放在多个磁盘上面进行冗余,降低数据丢失的可能性。

注意事项:

1. SecondaryNamenode只有在第一次进行元数据合并时需要从Namenode下载fsimage到本地。SecondaryNamenode在第一次元数据合并完成并上传到Namenode后,所持有的fsimage已是最新的fsimage,无需再从Namenode处获取,而只需要获取edits文件即可。2. SecondaryNamenode从Namenode上将要合并的edits和fsimage拷贝到自己当前服务器上,然后将fsimage和edits反序列化到SecondaryNamenode的内存中,进行计算合并。因此一般需要把Namenode和SecondaryNamenode分别部署到不同的机器上面,且SecondaryNamenode服务器配置要求一般不低于Namenode。3. SecondaryNamenode不是充当Namenode的“备服务器”,它的主要作用是进行元数据的checkpoint

Datanode

Datanode作为HDFS集群从节点,负责存储管理用户的文件块数据,并定期向Namenode汇报自身所持有的block信息(这点很重要,因为,当集群中发生某些block副本失效时,集群如何恢复block初始副本数量的问题)。

关于Datanode两个重要的参数:

1. 通过心跳信息上报参数

dfs.blockreport.intervalMsec3600000Determines block reporting interval in milliseconds.
  1. Datanode掉线判断时限参数

Datanode进程死亡或者网络故障造成Datanode无法与Namenode通信时,Namenode不会立即把该Datanode判定为死亡,要经过一段时间,这段时间称作超时时长。HDFS默认的超时时长为10分钟30秒。如果定义超时时间为timeout,则超时时长的计算公式为:

timeout = 2 * heartbeat.recheck.interval(默认5分钟) + 10 * dfs.heartbeat.interval(默认3秒)。

        heartbeat.recheck.interval        # 单位毫秒        2000        dfs.heartbeat.interval        # 单位秒        1

HDFS 读写数据流程