1.jvm内存结构
1.1 JDK1.7内存模型
-
程序计数器:线程私有,可以看做当前程序执行的行号指令器。
- 它是唯一一个在 JVM 规范中没有规定任何 OutOfMemoryError 情况的区域.
- 在 JVM 规范中,每个线程都有它自己的程序计数器,是线程私有的,生命周期与线程的生命周期一致.
- Java虚拟机栈:线程私有,生命周期与线程相同,虚拟机栈描述的是Java方法执行的内存模型,每个方法在执行时会形成一个栈帧,用于存储局部变量表、操作数栈、动态链接、方法出口等信息,一个方法从调用到执行完毕,就是一个栈帧从进栈到出栈的过程,下图是虚拟机栈的结构模型,图片来源和详细解释:
栈是一种快速有效的分配存储方式,访问速度仅次于程序计数器
JVM 直接对虚拟机栈的操作只有两个:每个方法执行,伴随着入栈(进栈/压栈),方法执行结束出栈
栈不存在垃圾回收问题
栈中可能出现的异常:
如果采用固定大小的 Java 虚拟机栈,那每个线程的 Java 虚拟机栈容量可以在线程创建的时候独立选定。如果线程请求分配的栈容量超过 Java 虚拟机栈允许的最大容量,Java 虚拟机将会抛出一个 StackOverflowError 异常.(可以通过参数-Xss来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度。)
如果 Java 虚拟机栈可以动态扩展,并且在尝试扩展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的虚拟机栈,那 Java 虚拟机将会抛出一个OutOfMemoryError异常 .
- 本地方法栈:线程私有,作用于Java虚拟机栈类似,只不过Java虚拟机栈执行Java方法,而本地方法栈运行本地的Native方法。
本地方法栈也是线程私有的.
允许线程固定或者可动态扩展的内存大小.
- 如果线程请求分配的栈容量超过本地方法栈允许的最大容量,Java 虚拟机将会抛出一个 StackOverflowError 异常
- 如果本地方法栈可以动态扩展,并且在尝试扩展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的本地方法栈,那么 Java虚拟机将会抛出一个OutofMemoryError异常
本地方法是使用 C 语言实现的.
- 堆:Java虚拟机管理的最大的一块内存区域,Java堆是线程共享的,用于存放对象实例。也就是说对象的出生和回收都是在这个区域进行的。堆分为初生代(Young Gen)和老年代(Tenured Gen),比例默认为1:2,而初生代又分为Eden和From和To三个区域,比例默认为8:1:1,如下图
Java 堆是 Java 虚拟机管理的内存中最大的一块,被所有线程共享。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数据都在这里分配内存。
为了进行高效的垃圾回收,虚拟机把堆内存逻辑上划分成三块区域(分代的唯一理由就是优化 GC 性能):
- 新生带(年轻代):新对象和没达到一定年龄的对象都在新生代
- 老年代(养老区):被长时间使用的对象,老年代的内存空间应该要比年轻代更大
- 元空间(JDK1.8 之前叫永久代):像一些方法中的操作临时对象等,JDK1.8 之前是占用 JVM 内存,JDK1.8 之后直接使用物理内存
Java 虚拟机规范规定,Java 堆可以是处于物理上不连续的内存空间中,只要逻辑上是连续的即可,像磁盘空间一样。实现时,既可以是固定大小,也可以是可扩展的,主流虚拟机都是可扩展的(通过 -Xmx 和 -Xms 控制),如果堆中没有完成实例分配,并且堆无法再扩展时,就会抛出 OutOfMemoryError 异常。
默认情况下,初始堆内存大小为:电脑内存大小/64
默认情况下,最大堆内存大小为:电脑内存大小/4
- 方法区:线程共享,用于存储已经被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,这里要说一下方法区和永久代到底是什么关系,永久代是HotSpot虚拟机对于方法区的实现,方法区的实现是不受虚拟机规范约束的,这里只是HotSpot虚拟机团队是这样实现的。
方法区(Method Area)与 Java 堆一样,是所有线程共享的内存区域。
虽然 Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫 Non-Heap(非堆),目的应该是与 Java 堆区分开。
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版本/字段/方法/接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将类在加载后进入方法区的运行时常量池中存放。运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的是 String.intern()方法。受方法区内存的限制,当常量池无法再申请到内存时会抛出 OutOfMemoryError 异常。
方法区的大小和堆空间一样,可以选择固定大小也可选择可扩展,方法区的大小决定了系统可以放多少个类,如果系统类太多,导致方法区溢出,虚拟机同样会抛出内存溢出错误
JVM 关闭后方法区即被释放
- 运行时常量池:在JDK1.7中,是运行时常量池是方法区的一部分,用于存放编译期生成的各种字符变量和符号引用。其实除了运行时常量池,还有字符串常量池,class常量池。
在加载类和结构到虚拟机后,就会创建对应的运行时常量池
常量池表(Constant Pool Table)是 Class 文件的一部分,用于存储编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中
JVM 为每个已加载的类型(类或接口)都维护一个常量池。池中的数据项像数组项一样,是通过索引访问的 运行时常量池中包含各种不同的常量,包括编译器就已经明确的数值字面量,也包括到运行期解析后才能够获得的方法或字段引用。此时不再是常量池中的符号地址了,这里换为真实地址
- 运行时常量池,相对于 Class 文件常量池的另一个重要特征是:动态性,Java 语言并不要求常量一定只有编译期间才能产生,运行期间也可以将新的常量放入池中,String 类的 intern() 方法就是这样的.
当创建类或接口的运行时常量池时,如果构造运行时常量池所需的内存空间超过了方法区所能提供的最大值,则 JVM 会抛出 OutOfMemoryError 异常。
1.2 JDK1.8内存模型
JDK1.8与1.7最大的区别是1.8将永久代取消,取而代之的是元空间,既然方法区是由永久代实现的,取消了永久代,那么方法区由谁来实现呢,在1.8中方法区是由元空间来实现,所以原来属于方法区的运行时常量池就属于元空间了。元空间属于本地内存,所以元空间的大小仅受本地内存限制,但是可以通过-XX:MaxMetaspaceSize进行增长上限的最大值设置,默认值为4G,元空间的初始空间大小可以通过-XX:MetaspaceSize进行设置,默认值为20.8M,还有一些其他参数可以进行设置,元空间大小会自动进行调整。
这里要说明一下,要区分字符串常量池和运行时常量池,这里引用这篇文章JDK1.8关于运行时常量池(blog.csdn.net/q5706503/ar… ), 字符串常量池的要点所提到的:
- 在JDK1.7之前运行时常量池逻辑包含字符串常量池存放在方法区, 此时hotspot虚拟机对方法区的实现为永久代
- 在JDK1.7 字符串常量池被从方法区拿到了堆中, 这里没有提到运行时常量池,也就是说字符串常量池被单独拿到堆,运行时常量池剩下的东西还在方法区, 也就是hotspot中的永久代
- 在JDK1.8 hotspot移除了永久代用元空间(Metaspace)取而代之, 这时候字符串常量池还在堆, 运行时常量池还在方法区, 只不过方法区的实现从永久代变成了元空间(Metaspace)。
2.Java垃圾回收
2.1 Java垃圾回收基础
2.1.1 判断一个对象是否可被回收
可达性分析算法
通过 GC Roots 作为起始点进行搜索,能够到达到的对象都是存活的,不可达的对象可被回收。
Java 虚拟机使用该算法来判断对象是否可被回收,在 Java 中 GC Roots 一般包含以下内容:
- 虚拟机栈中引用的对象
- 本地方法栈中引用的对象
- 方法区中类静态属性引用的对象
- 方法区中的常量引用的对象
2.1.2 方法区的回收
因为方法区主要存放永久代对象,而永久代对象的回收率比新生代低很多,因此在方法区上进行回收性价比不高。
主要是对常量池的回收和对类的卸载。
在大量使用反射、动态代理、CGLib 等 ByteCode 框架、动态生成 JSP 以及 OSGi 这类频繁自定义 ClassLoader 的场景都需要虚拟机具备类卸载功能,以保证不会出现内存溢出。
类的卸载条件很多,需要满足以下三个条件,并且满足了也不一定会被卸载:
- 该类所有的实例都已经被回收,也就是堆中不存在该类的任何实例。
- 加载该类的 ClassLoader 已经被回收。
- 该类对应的 Class 对象没有在任何地方被引用,也就无法在任何地方通过反射访问该类方法。
可以通过 -Xnoclassgc 参数来控制是否对类进行卸载。
2.1.3 引用类型
-
强引用
被强引用关联的对象不会被回收。
使用 new 一个新对象的方式来创建强引用。 -
软引用
被软引用关联的对象只有在内存不够的情况下才会被回收。
使用 SoftReference 类来创建软引用。 -
弱引用
被弱引用关联的对象一定会被回收,也就是说它只能存活到下一次垃圾回收发生之前。
使用 WeakReference 类来实现弱引用。 -
虚引用
又称为幽灵引用或者幻影引用。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用取得一个对象。
为一个对象设置虚引用关联的唯一目的就是能在这个对象被回收时收到一个系统通知。
使用 PhantomReference 来实现虚引用。
2.2 垃圾回收算法
2.2.1 标记-清除
将存活的对象进行标记,然后清理掉未被标记的对象。
不足:
- 标记和清除过程效率都不高;
- 会产生大量不连续的内存碎片,导致无法给大对象分配内存
2.2.2 标记-整理
让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。
2.2.3 复制
将内存划分为大小相等的两块,每次只使用其中一块,当这一块内存用完了就将还存活的对象复制到另一块上面,然后再把使用过的内存空间进行一次清理。
主要不足是只使用了内存的一半。
2.2.4 分代收集
现在的商业虚拟机采用分代收集算法,它根据对象存活周期将内存划分为几块,不同块采用适当的收集算法。
一般将堆分为新生代和老年代。
- 新生代使用: 复制算法
- 老年代使用: 标记 - 清除 或者 标记 - 整理 算法
2.3 垃圾收集器
以上是 HotSpot 虚拟机中的 7 个垃圾收集器,连线表示垃圾收集器可以配合使用。
- 单线程与多线程: 单线程指的是垃圾收集器只使用一个线程进行收集,而多线程使用多个线程;
- 串行与并行: 串行指的是垃圾收集器与用户程序交替执行,这意味着在执行垃圾收集的时候需要停顿用户程序;并形指的是垃圾收集器和用户程序同时执行。除了 CMS 和 G1 之外,其它垃圾收集器都是以串行的方式执行。
2.3.1 Serial 收集器
它是单线程的收集器,只会使用一个线程进行垃圾收集工作。
它的优点是简单高效,对于单个 CPU 环境来说,由于没有线程交互的开销,因此拥有最高的单线程收集效率。
它是 Client 模式下的默认新生代收集器,因为在用户的桌面应用场景下,分配给虚拟机管理的内存一般来说不会很大。Serial 收集器收集几十兆甚至一两百兆的新生代停顿时间可以控制在一百多毫秒以内,只要不是太频繁,这点停顿是可以接受的。
2.3.2 ParNew收集器
它是 Serial 收集器的多线程版本。
是 Server 模式下的虚拟机首选新生代收集器,除了性能原因外,主要是因为除了 Serial 收集器,只有它能与 CMS 收集器配合工作。
默认开启的线程数量与 CPU 数量相同,可以使用 -XX:ParallelGCThreads 参数来设置线程数。
2.3.3 Parallel Scavenge 收集器
与 ParNew 一样是多线程收集器。
其它收集器关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而它的目标是达到一个可控制的吞吐量,它被称为“吞吐量优先”收集器。这里的吞吐量指 CPU 用于运行用户代码的时间占总时间的比值。
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验。而高吞吐量则可以高效率地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
缩短停顿时间是以牺牲吞吐量和新生代空间来换取的: 新生代空间变小,垃圾回收变得频繁,导致吞吐量下降。
可以通过一个开关参数打卡 GC 自适应的调节策略(GC Ergonomics),就不需要手工指定新生代的大小(-Xmn)、Eden 和 Survivor 区的比例、晋升老年代对象年龄等细节参数了。虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。
2.3.4 Serial Old收集器
是 Serial 收集器的老年代版本,也是给 Client 模式下的虚拟机使用。如果用在 Server 模式下,它有两大用途:
-在 JDK 1.5 以及之前版本(Parallel Old 诞生以前)中与 Parallel Scavenge 收集器搭配使用。
- 作为 CMS 收集器的后备预案,在并发收集发生 Concurrent Mode Failure 时使用。
2.3.5 Parallel Old 收集器
是 Parallel Scavenge 收集器的老年代版本。
在注重吞吐量以及 CPU 资源敏感的场合,都可以优先考虑 Parallel Scavenge 加 Parallel Old 收集器。
2.3.6 CMS 收集器
CMS(Concurrent Mark Sweep),Mark Sweep 指的是标记 - 清除算法。
分为以下四个流程:
- 初始标记: 仅仅只是标记一下 GC Roots 能直接关联到的对象,速度很快,需要停顿。
- 并发标记: 进行 GC Roots Tracing 的过程,它在整个回收过程中耗时最长,不需要停顿。
- 重新标记: 为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,需要停顿。
- 并发清除: 不需要停顿。
在整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,不需要进行停顿。
具有以下缺点:
- 吞吐量低: 低停顿时间是以牺牲吞吐量为代价的,导致 CPU 利用率不够高。
- 无法处理浮动垃圾,可能出现 Concurrent Mode Failure。浮动垃圾是指并发清除阶段由于用户线程继续运行而产生的垃圾,这部分垃圾只能到下一次 GC 时才能进行回收。由于浮动垃圾的存在,因此需要预留出一部分内存,意味着 CMS 收集不能像其它收集器那样等待老年代快满的时候再回收。如果预留的内存不够存放浮动垃圾,就会出现 Concurrent Mode Failure,这时虚拟机将临时启用 Serial Old 来替代 CMS。
- 标记 - 清除算法导致的空间碎片,往往出现老年代空间剩余,但无法找到足够大连续空间来分配当前对象,不得不提前触发一次 Full GC。
2.3.7 G1收集器
G1(Garbage-First),它是一款面向服务端应用的垃圾收集器,在多 CPU 和大内存的场景下有很好的性能。HotSpot 开发团队赋予它的使命是未来可以替换掉 CMS 收集器。
堆被分为新生代和老年代,其它收集器进行收集的范围都是整个新生代或者老年代,而 G1 可以直接对新生代和老年代一起回收。
G1 把堆划分成多个大小相等的独立区域(Region),新生代和老年代不再物理隔离。
通过引入 Region 的概念,从而将原来的一整块内存空间划分成多个的小空间,使得每个小空间可以单独进行垃圾回收。这种划分方法带来了很大的灵活性,使得可预测的停顿时间模型成为可能。通过记录每个 Region 垃圾回收时间以及回收所获得的空间(这两个值是通过过去回收的经验获得),并维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region。
每个 Region 都有一个 Remembered Set,用来记录该 Region 对象的引用对象所在的 Region。通过使用 Remembered Set,在做可达性分析的时候就可以避免全堆扫描。
如果不计算维护 Remembered Set 的操作,G1 收集器的运作大致可划分为以下几个步骤:
- 初始标记
- 并发标记
- 最终标记: 为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程的 Remembered Set Logs 里面,最终标记阶段需要把 Remembered Set Logs 的数据合并到 Remembered Set 中。这阶段需要停顿线程,但是可并行执行。
- 筛选回收: 首先对各个 Region 中的回收价值和成本进行排序,根据用户所期望的 GC 停顿时间来制定回收计划。此阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分 Region,时间是用户可控制的,而且停顿用户线程将大幅度提高收集效率。
具备如下特点:
空间整合: 整体来看是基于“标记 - 整理”算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的,这意味着运行期间不会产生内存空间碎片。
可预测的停顿: 能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在 GC 上的时间不得超过 N 毫秒。
3.jvm内存模型(JMM)
内存模型解决并发问题主要采用两种方式:限制处理器优化和使用内存屏障。
从抽象的角度来看,JMM 定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读 / 写共享变量的副本。本地内存是 JMM 的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。
Java 内存模型是一种规范,定义了很多东西:
- 所有的变量都存储在主内存(Main Memory)中。
- 每个线程都有一个私有的本地内存(Local Memory),本地内存中存储了该线程以读/写共享变量的拷贝副本。
- 线程对变量的所有操作都必须在本地内存中进行,而不能直接读写主内存。
- 不同的线程之间无法直接访问对方本地内存中的变量。
为了更好的控制主内存和本地内存的交互,Java 内存模型定义了八种操作来实现:
- lock:锁定。作用于主内存的变量,把一个变量标识为一条线程独占状态。
- unlock:解锁。作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
- read:读取。作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
- load:载入。作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
- use:使用。作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
- assign:赋值。作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
- store:存储。作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。
- write:写入。作用于主内存的变量,它把store操作从工作内存中一个变量的值传送到主内存的变量中。
三大特征
-
原子性
JMM 保证了 read、load、assign、use、store 和 write 六个操作具有原子性,可以认为除了 long 和 double 类型以外,对其他基本数据类型所对应的内存单元的访问读写都是原子的。
如果想要一个颗粒度更大的原子性保证,就可以使用 lock 和 unlock 这两个操作。 -
可见性
可见性是指当一个线程修改了共享变量的值,其他线程也能立即感知到这种变化。
我们从前面的图中可以看到,要保证这种效果,需要经历多次操作。一个线程对变量的修改,需要先同步给主内存,赶在另外一个线程的读取之前刷新变量值。
volatile、synchronized、final 和锁,都是保证可见性的方式。
这里要着重提一下 volatile,因为它的特点最显著。使用了 volatile 关键字的变量,每当变量的值有变动时,都会把更改立即同步到主内存中;而如果某个线程想要使用这个变量,则先要从主存中刷新到工作内存上,这样就确保了变量的可见性。
而锁和同步关键字就比较好理解一些,它是把更多个操作强制转化为原子化的过程。由于只有一把锁,变量的可见性就更容易保证。
3.有序性
4.JVM哪个区域不会发生内存溢出?
程序计数器是一块内存较小的区域,它用于存储线程的每个执行指令,每个线程都有自己的程序计数器,此区域不会有内存溢出的情况。
5.Hotspot 为什么分新生代和老年代?
因为有的对象寿命长,有的对象寿命短。应该将寿命长的对象放在一个区,寿命短的对象放在一个区。不同的区采用不同的垃圾收集算法。寿命短的区清理频次高一点,寿命长的区清理频次低一点。提高效率。
1、Minor GC是发生在新生代中的垃圾收集,采用的复制算法;
2、新生代中每次使用的空间不超过90%,主要用来存放新生的对象;
3、Minor GC每次收集后Eden区和一块Survivor区都被清空;
4、老年代中使用Full GC,采用的标记-清除算法
6.为什么要有Survivor区?
如果没有Survivor区,那么Eden每次满了清理垃圾,存活的对象被迁移到老年区,老年区满了,就会触发Full GC,Full GC是非常耗时的,解决办法:
- 增加老年代内存,那么老年代清理频次减少,但清理一次花费时间更长。
- 减少老年代内存,老年代一次FullGC时间更少,频率增加。
都不行,只有再加一层Survivor。将Eden区满了的对象,添加到Survivor区,等对象反复清理几遍之后都没清理掉,再放到老年区,这样老年区的压力就会小很多。即Survivor相当于一个筛子,筛掉生命周期短的,将生命周期长的放到老年代区,减少老年代被清理的次数。
7.为什么要加两个Survivor?
设置两个Survivor区最大的好处就是解决了碎片化。
8.Java类加载过程?
9.双亲委派模型讲一下(juejin.cn/post/684490…)
双亲委派模式,即加载器加载类时先把请求委托给自己的父类加载器执行,直到顶层的启动类加载器.父类加载器能够完成加载则成功返回,不能则子类加载器才自己尝试加载.
优点:
避免类的重复加载
避免Java的核心API被篡改
10.Java如何打破双亲委派机制?
打破双亲委派机制,即在类加载的时候不是传递到父类加载器中加载,而是由自己加载。
此时需要自定义一个类加载器,继承ClassLoader类,然后重写父类的findClass方法和loadClass方法。即
1、自定义一个类加载器,继承ClassLoader类
2、重写findClass方法和loadClass方法
这里最主要的是重写loadclass方法,因为双亲委派机制的实现都是通过这个方法实现的,先找父加载器进行加载,如果父加载器无法加载再由自己来进行加载,源码里会直接找到根加载器,重写了这个方法以后就能自己定义加载的方式了。
11.jvm中几种引用类型(强软弱虚)
一、强引用
在java中最常见的就是强引用,把一个对象赋给一个引用变量,这个引用变量就是一个强引用。当一个对象被强引用变量引用时,它处于可达状态,它是不可能被垃圾回收机制回收的,即使该对象以后永远都不会被用到JVM也不会回收。因此强引用是造成Java内存泄露的主要原因之一。
二、软引用
软引用需要用SoftReference类来实现,对于只有软引用的对象来说,当系统内存足够时它不会被回收,当系统内存空间不足时它会被回收。软引用通常用在对内存敏感的程序中。
三、弱引用
弱引用需要用到WeakReference类来实现,它比软引用的生存期更短,对于只有弱引用的对象来说,只要垃圾回收机制一运行,不管JVM的内存空间是否足够,总会回收该对象占用的内存。
四、虚引用
虚引用需要PhantomReference类来实现,它不能单独使用,必须和引用队列联合使用。虚引用的主要作用是跟踪对象被垃圾回收的状态。
12.ThreadLocal-hash冲突与内存泄漏
13.什么是happens-before
在JMM中,如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须存在happens-before关系。 happens-before和JMM关系如下图:
happens-before原则定义如下:
如果一个操作happens-before另一个操作,那么第一个操作的执行结果将对第二个操作可见,而且第一个操作的执行顺序排在第二个操作之前。
两个操作之间存在happens-before关系,并不意味着一定要按照happens-before原则制定的顺序来执行。如果重排序之后的执行结果与按照happens-before关系来执行的结果一致,那么这种重排序并不非法。
下面是happens-before原则规则:
1.程序次序规则:一个线程内,按照代码顺序,书写在前面的操作先行发生于书写在后面的操作;
2.锁定规则:一个unLock操作先行发生于后面对同一个锁的lock操作;
3.volatile变量规则:对一个变量的写操作先行发生于后面对这个变量的读操作;
4.传递规则:如果操作A先行发生于操作B,而操作B又先行发生于操作C,则可以得出操作A先行发生于操作C;
5.线程启动规则:Thread对象的start()方法先行发生于此线程的每个一个动作;
6.线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生;
7.线程终结规则:线程中所有的操作都先行发生于线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值手段检测到线程已经终止执行;
8.对象终结规则:一个对象的初始化完成先行发生于他的finalize()方法的开始;
14.JVM相关的分析工具有使用过哪些?具体的性能调优步骤吗?
JVM调优的常见命令工具包括:
1)jps命令用于查询正在运行的JVM进程,
2)jstat可以实时显示本地或远程JVM进程中类装载、内存、垃圾收集、JIT编译等数据
3)jinfo用于查询当前运行这的JVM属性和参数的值。
4)jmap用于显示当前Java堆和永久代的详细信息
5)jhat用于分析使用jmap生成的dump文件,是JDK自带的工具
6)jstack用于生成当前JVM的所有线程快照,线程快照是虚拟机每一条线程正在执行的方法,目的是定位线程出现长时间停顿的原因。
常用调优工具分为两类,j
dk自带监控工具:jconsole和jvisualvm,
第三方有:MAT(Memory Analyzer Tool)、GChisto。
jconsole,Java Monitoring and Management Console是从java5开始,在JDK中自带的java监控和管理控制台,用于对JVM中内存,线程和类等的监控
jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。
MAT,Memory Analyzer Tool,一个基于Eclipse的内存分析工具,是一个快速、功能丰富的Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗
GChisto,一款专业分析gc日志的工具。
15.JVM性能调优的6大步骤,及关键调优参数详解?
-
监控GC的状态
使用各种JVM工具,查看当前日志,分析当前JVM参数设置,并且分析当前堆内存快照和gc日志,根据实际的各区域内存划分和GC执行时间,觉得是否进行优化。
-
生成堆的dump文件
通过JMX的MBean生成当前的堆(Heap)信息,大小为一个3G(整个堆的大小)的hprof文件,如果没有启动JMX可以通过Java的jmap命令来生成该文件。
-
分析dump文件
几种工具打开该文件: Visual VM
、IBM HeapAnalyzer、JDK 自带的Hprof工具、Mat(Eclipse专门的静态内存分析工具)推荐使用。 -
分析结果,判断是否需要优化
如果各项参数设置合理,系统没有超时日志出现,GC频率不高,GC耗时不高,那么没有必要进行GC优化,如果GC时间超过1-3秒,或者频繁GC,则必须优化。
-
调整GC类型和内存分配
如果内存分配过大或过小,或者采用的GC收集器比较慢,则应该优先调整这些参数,并且先找1台或几台机器进行beta,然后比较优化过的机器和没有优化的机器的性能对比,并有针对性的做出最后选择。
-
不断分析和调整
通过不断的试验和试错,分析并找到最合适的参数,如果找到了最合适的参数,则将这些参数应用到所有服务器。
JVM调优参数参考
- 针对JVM堆的设置,一般可以通过-Xms -Xmx限定其最小、最大值,为了防止垃圾收集器在最小、最大之间收缩堆而产生额外的时间,通常把最大、最小设置为相同的值;
- 年轻代和年老代将根据默认的比例(1:2)分配堆内存, 可以通过调整二者之间的比率NewRadio来调整二者之间的大小,也可以针对回收代。比如年轻代,通过 -XX:newSize -XX:MaxNewSize来设置其绝对大小。同样,为了防止年轻代的堆收缩,我们通常会把-XX:newSize -XX:MaxNewSize设置为同样大小。
- 年轻代和年老代设置多大才算合理
-
更大的年轻代必然导致更小的年老代,大的年轻代会延长普通GC的周期,但会增加每次GC的耗时;小的年老代会导致更频繁的Full GC
-
更小的年轻代必然导致更大年老代,小的年轻代会导致普通GC很频繁,但每次的GC时间会更短;大的年老代会减少Full GC的频率。
如何选择应该依赖应用程序对象生命周期的分布情况: 如果应用存在大量的临时对象,应该选择更大的年轻代;如果存在相对较多的持久对象,年老代应该适当增大。但很多应用都没有这样明显的特性。
在抉择时应该根据以下两点:- 本着Full GC尽量少的原则,让年老代尽量缓存常用对象,JVM的默认比例1:2也是这个道理 。
- 通过观察应用一段时间,看其他在峰值时年老代会占多少内存,在不影响Full GC的前提下,根据实际情况加大年轻代,比如可以把比例控制在1:1。但应该给年老代至少预留1/3的增长空间。
- 在配置较好的机器上(比如多核、大内存),可以为年老代选择并行收集算法: -XX:+UseParallelOldGC 。
- 线程堆栈的设置:每个线程默认会开启1M的堆栈,用于存放栈帧、调用参数、局部变量等,对大多数应用而言这个默认值太了,一般256K就足用。理论上,在内存不变的情况下,减少每个线程的堆栈,可以产生更多的线程,但这实际上还受限于操作系统。
16.JVM 里 new 对象时,堆会发生抢占吗?怎么去设计JVM的堆的线程安全?
会,假设JVM虚拟机上,每一次new 对象时,指针就会向右移动一个对象size的距离,一个线程正在给A对象分配内存,指针还没有来的及修改,另一个为B对象分配内存的线程,引用这之前的指针指向,这就发生了抢占,也被称为指针碰撞
TLAB的实现是给每个线程分配私有的指针,存对象的内存空间还是给所有线程访问,其它线程无法在这个区域分配,保证堆的线程安全
Thread Local Allocation Buffer,线程本地分配缓存
JVM在内存新生代Eden Space中开辟了一小块线程私有的区域TLAB(Thread-local allocation buffer)。在Java程序中很多对象都是小对象且用过即丢,它们不存在线程共享也适合被快速GC,所以对于小对象通常JVM会优先分配在TLAB上,并且TLAB上的分配由于是线程私有,所以没有锁开销。
也就是说,Java中每个线程都会有自己的缓冲区称作TLAB,在对象分配的时候不用锁住整个堆,而只需要在自己的缓冲区分配即可。
17.Java中new一个对象的步骤
- 当虚拟机遇到一条new指令时候,首先去检查这个指令的参数是否能 在常量池中能否定位到一个类的符号引用 (即类的带路径全名),并且检查这个符号引用代表的类是否已被加载、解析和初始化过,即验证是否是第一次使用该类。如果没有(不是第一次使用),那必须先执行相应的类加载过程(class.forname())。
- 在类加载检查通过后,接下来虚拟机将 为新生的对象分配内存 。对象所需的内存的大小在类加载完成后便可以完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来,目前常用的有两种方式,根据使用的垃圾收集器的不同使用不同的分配机制:
2.1. 指针碰撞(Bump the Pointer):假设Java堆的内存是绝对规整的,所有用过的内存都放一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅把那个指针向空闲空间那边挪动一段与对象大小相等的距离。
2.2. 空闲列表(Free List):如果Java堆中的内存并不是规整的,已使用的内存和空间的内存是相互交错的,虚拟机必须维护一个空闲列表,记录上哪些内存块是可用的,在分配时候从列表中找到一块足够大的空间划分给对象使用。 - 内存分配完后,虚拟机需要将分配到的内存空间中的数据类型都 初始化为零值(不包括对象头);
- 虚拟机要 对对象头进行必要的设置 ,例如这个对象是哪个类的实例(即所属类)、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息,这些信息都存放在对象的对象头中。
至此,从虚拟机视角来看,一个新的对象已经产生了。但是在Java程序视角来看,执行new操作后会接着执行如下步骤: - 调用对象的init()方法 ,根据传入的属性值给对象属性赋值。
- 在线程 栈中新建对象引用 ,并指向堆中刚刚新建的对象实例。