携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第23天,点击查看活动详情
一、题目
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
二、示例
示例 1:
输入: nums = [4,5,6,7,0,1,2], target = 0
输出: 4
示例 2:
输入: nums = [4,5,6,7,0,1,2], target = 3
输出: -1
示例 3:
输入: nums = [1], target = 0
输出: -1
三、题解
二分查找 class Solution { public int search(int[] nums, int target) { int n = nums.length; if (n == 0) { return -1; } if (n == 1) { return nums[0] == target ? 0 : -1; } int l = 0, r = n - 1; while (l <= r) { int mid = (l + r) / 2; if (nums[mid] == target) { return mid; } if (nums[0] <= nums[mid]) { if (nums[0] <= target && target < nums[mid]) { r = mid - 1; } else { l = mid + 1; } } else { if (nums[mid] < target && target <= nums[n - 1]) { l = mid + 1; } else { r = mid - 1; } } } return -1; } }
复杂度分析
-
时间复杂度: O(\log n)O(logn),其中 nn 为 \textit{nums}nums 数组的大小。整个算法时间复杂度即为二分查找的时间复杂度 O(\log n)O(logn)。
-
空间复杂度: O(1)O(1) 。我们只需要常数级别的空间存放变量。
解题思路
方案一:二分查找
可以理解为使两个生序数组,在二分的基础上稍加判断即可
对于有序数组,可以使用二分查找的方法查找元素。
但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分查找吗?答案是可以的。
可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分查找的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:
如果 [l, mid - 1] 是有序数组,且 target 的大小满足 [\textit{nums}[l],\textit{nums}[mid])[nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。 如果 [mid, r] 是有序数组,且 target 的大小满足 (\textit{nums}[mid+1],\textit{nums}[r]](nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。