【8月刷题打卡】加分二叉树

80 阅读2分钟

携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第11天,点击查看活动详情

[NOIP2003 提高组] 加分二叉树

题目描述

设一个 nn 个节点的二叉树 tree\text{tree} 的中序遍历为(1,2,3,,n)(1,2,3,\ldots,n),其中数字 1,2,3,,n1,2,3,\ldots,n 为节点编号。每个节点都有一个分数(均为正整数),记第 ii 个节点的分数为 did_itree\text{tree} 及它的每个子树都有一个加分,任一棵子树 subtree\text{subtree}(也包含 tree\text{tree} 本身)的加分计算方法如下:

subtree\text{subtree} 的左子树的加分 ×\times subtree\text{subtree} 的右子树的加分 ++ subtree\text{subtree} 的根的分数。

若某个子树为空,规定其加分为 11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为 (1,2,3,,n)(1,2,3,\ldots,n) 且加分最高的二叉树 tree\text{tree}。要求输出

  1. tree\text{tree} 的最高加分。

  2. tree\text{tree} 的前序遍历。

输入格式

1111 个整数 nn,为节点个数。

22nn 个用空格隔开的整数,为每个节点的分数

输出格式

1111 个整数,为最高加分(Ans4,000,000,000 Ans \le 4,000,000,000)。

22nn 个用空格隔开的整数,为该树的前序遍历。

样例 #1

样例输入 #1

5
5 7 1 2 10

样例输出 #1

145
3 1 2 4 5

提示

数据规模与约定

对于全部的测试点,保证 1n<301 \leq n< 30,节点的分数是小于 100100 的正整数,答案不超过 4×1094 \times 10^9

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 50;
typedef long long ll;
ll n;
ll f[MAXN][MAXN], root[MAXN][MAXN];

void print(ll l, ll r) {
	if (l > r)return;
	printf("%lld ", root[l][r]);
	if (l == r)return;
	print(l, root[l][r] - 1);
	print(root[l][r]+1,r);
}

int main() {
	scanf("%lld", &n);
	for (int i = 1; i <= n; i++)scanf("%lld", &f[i][i]),f[i][i-1]=1, root[i][i] = i;
	for (int len = 1; len < n; ++len) {
		for (int i = 1; i + len <= n; ++i) {
			int j = i + len;
			f[i][j] = f[i + 1][j] + f[i][i];//默认它的左子树为空,如果有的话,这肯定不是最优解
			root[i][j] = i;//默认从起点选根
			for (int k = i + 1; k < j; ++k) {
				if (f[i][j] < f[i][k - 1] * f[k + 1][j] + f[k][k]) {
					f[i][j] = f[i][k - 1] * f[k + 1][j] + f[k][k];
					root[i][j] = k;
				}
			}
		}
	}
	cout << f[1][n] << endl;
	print(1, n);
	return 0;
}