随着科技的快速发展,人工智能俨然成了当今社会的关注焦点。而在人工智能的发展上,深度学习、强化学习、迁移学习等成为了科学界、工业界研究和应用的热点。在实际研究和应用过程当中,研究人员逐渐发现了深度学习单独应用的缺点,如没有决策能力,不可推理等。而深度强化学习,作为一种崭新的机器学习方法,同时具有感知能力和决策能力,它是深度学习与强化学习的结合,二者的结合涵盖众多算法、规则、框架,并广泛应用于机器人、无人机、无人车、无人艇、兵棋推演、自动驾驶、能源分配、编队控制、航迹规划、路由规划等众多领域,具有极高的研究与应用价值。
专家:
中国科学院计算技术研究所、清华大学、北京理工大学等科研机构和大学的高级专家,拥有丰富的科研及工程技术经验,长期从事人工智能、机器学习、深度学习、大数据分析等领域的教学与研究工作。
对象:
各省市、自治区从事人工智能、机器学习、计算机视觉、自然语言处理、无人机、无人艇、无人车、机器人、智能体、多智能体、兵棋推演、自动驾驶、能源分配、编队控制、航迹规划、路由规划等领域相关的企事业单位技术骨干、科研院所研究人员和大专院校相关专业教学人员及在校研究生等相关人员,以及强化学习、人工智能广大爱好者。
学习目标:
1、了解强化学习发展。
2、掌握单智能体深度强化学习。
3、掌握多智能体深度强化学习。
4、掌握多任务深度强化学习。
5、掌握强化学习应用领域Gym Retro游戏平台、机器人控制、计算机视觉、自然语言处理。
6、实现Gym、Ray仿真环境。
7、实际体验Q Learning实验、DQN实验、DDPG实验。
课程计划
1.强化学习的发展历程
2.马尔可夫决策过程
3.动态规划
4.无模型预测学习
5.无模型控制学习
6.价值函数逼近
7.策略梯度方法
8.深度强化学习-DQN算法系列
9.深度策略梯度-DDPG,PPO等