回文链表判断
给定一个单链表的头节点head,请判断该链表是否为回文结构。
1)哈希表方法特别简单(笔试用)
2)改原链表的方法就需要注意边界了(面试用)
// 利用栈先进后出的特性,很简单,但是空间复杂度高
public static boolean isPalindrome1(Node head) {
Stack<Node> stack = new Stack<Node>();
Node cur = head;
while (cur != null) {
stack.push(cur);
cur = cur.next;
}
while (head != null) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// 比较难写,但是空间复杂度低
public static boolean isPalindrome3(Node head) {
if (head == null || head.next == null) {
return true;
}
Node n1 = head; // 慢指针,一次一步
Node n2 = head; // 快指针,一次两步
while (n2.next != null && n2.next.next != null) { // find mid node
n1 = n1.next; // 奇数,正好中点;偶数,中点偏左位置
n2 = n2.next.next; // n2位置不重要,主要是判断何时停止循环
}
n2 = n1.next; // n2 -> right part first node
n1.next = null; // mid.next -> null
Node n3 = null;
while (n2 != null) { // 右侧链表翻转
n3 = n2.next; // n3相当于next
n2.next = n1; // n1相当于pre
n1 = n2;
n2 = n3;
}
n3 = n1; // n1此时来到了最后一个节点,用n3保存
n2 = head;
boolean res = true;
while (n1 != null && n2 != null) { // 判断回文,中点next为null,此时停止
if (n1.value != n2.value) {
res = false;
break;
}
n1 = n1.next; // left to mid
n2 = n2.next; // right to mid
}
n1 = n3.next; // n3之前保存过,为最后的节点
n3.next = null;
while (n1 != null) { // 还原链表
n2 = n1.next; // n1为cur,n2为next,n3为pre
n1.next = n3;
n3 = n1;
n1 = n2;
}
return res;
}
复制带随机指针的链表
public static class Node {
int val;
Node next;
Node random;
public Node(int val) {
this.val = val;
this.next = null;
this.random = null;
}
}
public static Node copyRandomList1(Node head) {
// key 老节点
// value 新节点
HashMap<Node, Node> map = new HashMap<Node, Node>();
Node cur = head;
while (cur != null) {
map.put(cur, new Node(cur.val));
cur = cur.next;
}
cur = head;
while (cur != null) {
// cur 老
// map.get(cur) 新
// 新.next -> cur.next克隆节点找到
map.get(cur).next = map.get(cur.next);
map.get(cur).random = map.get(cur.random);
cur = cur.next;
}
return map.get(head);
}
public static Node copyRandomList2(Node head) {
if (head == null) {
return null;
}
Node cur = head;
Node next = null; // 记录cur指针,下次应该到的位置
// 1 -> 2 -> 3 -> null
// 1 -> 1' -> 2 -> 2' -> 3 -> 3'
while (cur != null) {
next = cur.next;
cur.next = new Node(cur.val);
cur.next.next = next;
cur = next;
}
cur = head;
Node copy = null;
// 1 1' 2 2' 3 3'
// 依次设置 1' 2' 3' random指针
while (cur != null) {
next = cur.next.next;
copy = cur.next;
copy.random = cur.random != null ? cur.random.next : null;
cur = next;
}
Node res = head.next;
cur = head;
// 老 新 混在一起,next方向上,random正确
// next方向上,把新老链表分离
while (cur != null) {
next = cur.next.next;
copy = cur.next;
cur.next = next;
copy.next = next != null ? next.next : null; // 注意边界
cur = next;
}
return res;
}
链表中,等于某个值的节点放中间,小于放左,大于放右、
将单向链表按某值划分成左边小、中间相等、右边大的形式
1)把链表放入数组里,在数组上做partition(笔试用)
2)分成小、中、大三部分,再把各个部分之间串起来(面试用)
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
// 按照netherlandsFlag实现即可
public static Node listPartition1(Node head, int pivot) {
if (head == null) {
return head;
}
Node cur = head;
int i = 0;
while (cur != null) {
i++;
cur = cur.next;
}
Node[] nodeArr = new Node[i];
i = 0;
cur = head;
for (i = 0; i != nodeArr.length; i++) {
nodeArr[i] = cur;
cur = cur.next;
}
arrPartition(nodeArr, pivot);
for (i = 1; i != nodeArr.length; i++) {
nodeArr[i - 1].next = nodeArr[i];
}
nodeArr[i - 1].next = null;
return nodeArr[0];
}
public static void arrPartition(Node[] nodeArr, int pivot) {
int small = -1;
int big = nodeArr.length;
int index = 0;
while (index != big) {
if (nodeArr[index].value < pivot) {
swap(nodeArr, ++small, index++);
} else if (nodeArr[index].value == pivot) {
index++;
} else {
swap(nodeArr, --big, index);
}
}
}
public static void swap(Node[] nodeArr, int a, int b) {
Node tmp = nodeArr[a];
nodeArr[a] = nodeArr[b];
nodeArr[b] = tmp;
}
public static Node listPartition2(Node head, int pivot) {
Node sH = null; // small head
Node sT = null; // small tail
Node eH = null; // equal head
Node eT = null; // equal tail
Node mH = null; // big head
Node mT = null; // big tail
Node next = null; // save next node
// every node distributed to three lists
while (head != null) {
next = head.next;
head.next = null;
if (head.value < pivot) {
if (sH == null) {
sH = head;
sT = head;
} else {
sT.next = head;
sT = head;
}
} else if (head.value == pivot) {
if (eH == null) {
eH = head;
eT = head;
} else {
eT.next = head;
eT = head;
}
} else {
if (mH == null) {
mH = head;
mT = head;
} else {
mT.next = head;
mT = head;
}
}
head = next;
}
// 小于区域的尾巴,连等于区域的头,等于区域的尾巴连大于区域的头
if (sT != null) { // 如果有小于区域
sT.next = eH;
eT = eT == null ? sT : eT; // 下一步,谁去连大于区域的头,谁就变成eT
}
// 下一步,一定是需要用eT 去接 大于区域的头
// 有等于区域,eT -> 等于区域的尾结点
// 无等于区域,eT -> 小于区域的尾结点
// eT 尽量不为空的尾巴节点
if (eT != null) { // 如果小于区域和等于区域,不是都没有
eT.next = mH;
}
return sH != null ? sH : (eH != null ? eH : mH);
}
两个链表是否相交,相交则返回第一个相交节点
给定两个可能有环也可能无环的单链表,头节点head1和head2。请实现一个函数,如果两个链表相交,请返回相交的 第一个节点。如果不相交,返回null。如果两个链表长度之和为N,时间复杂度请达到O(N),额外空间复杂度 请达到O(1)。
public static Node getIntersectNode(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node loop1 = getLoopNode(head1);
Node loop2 = getLoopNode(head2);
// 不可能一个有环,一个没环
if (loop1 == null && loop2 == null) { // 都没有环
return noLoop(head1, head2);
}
if (loop1 != null && loop2 != null) { // 都有环
return bothLoop(head1, loop1, head2, loop2);
}
return null;
}
// 找到链表第一个入环节点,如果无环,返回null
public static Node getLoopNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return null;
}
// n1 慢 n2 快
Node slow = head.next; // n1 -> slow
Node fast = head.next.next; // n2 -> fast
while (slow != fast) {
if (fast.next == null || fast.next.next == null) {
return null;
}
fast = fast.next.next;
slow = slow.next;
}
// slow fast 相遇
fast = head;
while (slow != fast) { // 从头开始走,总能相遇
slow = slow.next;
fast = fast.next;
}
return slow;
}
// 如果两个链表都无环,返回第一个相交节点,如果不想交,返回null
public static Node noLoop(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node cur1 = head1;
Node cur2 = head2;
int n = 0;
while (cur1.next != null) { // 走到最后一个节点,停
n++;
cur1 = cur1.next;
}
while (cur2.next != null) {
n--;
cur2 = cur2.next;
}
if (cur1 != cur2) { // 如果二者的尾节点不相同,显然不相交
return null;
}
// n : 链表1长度减去链表2长度的值
cur1 = n > 0 ? head1 : head2; // 谁长,谁的头变成cur1
cur2 = cur1 == head1 ? head2 : head1; // 谁短,谁的头变成cur2
n = Math.abs(n);
while (n != 0) { // 这个循环结束,二者和交点的距离相同
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}
// 两个有环链表,返回第一个相交节点,如果不想交返回null
public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
Node cur1 = null;
Node cur2 = null;
if (loop1 == loop2) { // 交点相同
cur1 = head1;
cur2 = head2;
int n = 0;
while (cur1 != loop1) {
n++;
cur1 = cur1.next;
}
while (cur2 != loop2) {
n--;
cur2 = cur2.next;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
} else { // 相交,交点不同 或者 不相交
cur1 = loop1.next;
while (cur1 != loop1) { // 从其中一个交点出发,找不到第二个交点就是不相交
if (cur1 == loop2) {
return loop1;
}
cur1 = cur1.next;
}
return null;
}
}