携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第24天,点击查看活动详情
AcWing 851. spfa求最短路
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。
数据范围
1≤n,m≤10^5,
图中涉及边长绝对值均不超过 1000010000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
思路
spfa 算法(队列优化的Bellman-Ford算法)模板
时间复杂度 平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数
int n; //总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中
// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while (q.size()){
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i]){
int j = e[i];
if (dist[j] > dist[t] + w[i]){
dist[j] = dist[t] + w[i];
if (!st[j]){ //如果队列中已存在j,则不需要将j重复插入
q.push(j);
st[j] = true;
}
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
ac代码
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
const int N = 100010;
int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c){
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int spfa(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while (q.size()){
int t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i]){
int j = e[i];s
if (dist[j] > dist[t] + w[i]){
dist[j] = dist[t] + w[i];
if (!st[j]){
q.push(j);
st[j] = true;
}
}
}
}
return dist[n];
}
int main(){
cin >> n >> m;
memset(h, -1, sizeof h);
while (m -- ){
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
int t = spfa();
if (t == 0x3f3f3f3f) cout << "impossible" ;
else cout << t << endl;
return 0;
}