携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第25天,点击查看活动详情
AcWing 852. spfa判断负环
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。
数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
思路
spfa判断图中是否存在负环 —— 模板
时间复杂度是 O(nm), n 表示点数,m 表示边数
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中
// 如果存在负环,则返回true,否则返回false。
bool spfa(){
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。
queue<int> q;
for (int i = 1; i <= n; i ++ ){
q.push(i);
st[i] = true;
}
while (q.size()){
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i]){
int j = e[i];
if (dist[j] > dist[t] + w[i]){
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true;
// 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j]){
q.push(j);
st[j] = true;
}
}
}
}
return fa
}
ac代码
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 2010, M = 10010;
int n, m;
int h[N], w[M], e[M], ne[M], idx;
int dist[N], cnt[N];
bool st[N];
void add(int a, int b, int c){
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
bool spfa(){
queue<int> q;
for (int i = 1; i <= n; i ++ ){
st[i] = true;
q.push(i);
}
while (q.size()){
int t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i]){
int j = e[i];
if (dist[j] > dist[t] + w[i]){
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true;
if (!st[j]){
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
int main(){
cin >> n >> m;
memset(h, -1, sizeof h);
while (m -- ){
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
if (spfa()) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}