流式计算与批量计算|青训营笔记

132 阅读3分钟

这是我参与「第四届青训营 」笔记创作活动的第4天

现实世界中,所有的数据都是以流式的形态产生的,不管是哪里产生的数据,在产生的过程中都是一条条地生成,最后经过了存储和转换处理,形成了各种类型的数据集。根据现实的数据产生方式和数据产生是否含有边界(具有起始点和终止点)角度,将数据分为两种类型的数据集,一种是有界数据集,另外一种是无界数据集。

  1. 有界数据集
    有界数据集具有时间边界,在处理过程中数据一定会在某个时间范围内起始和结束,有可能是一分钟,也有可能是一天内的交易数据。对有界数据集的数据处理方式被称为批计算(Batch Processing),例如将数据从RDBMS或文件系统等系统中读取出来,然后在分布式系统内处理,最后再将处理结果写入存储介质中,整个过程就被称为批处理过程。而针对批数据处理,目前业界比较流行的分布式批处理框架有Apache Hadoop和Apache Spark等。
  2. 无界数据集
    对于无界数据集,数据从开始生成就一直持续不断地产生新的数据,因此数据是没有边界的,例如服务器的日志、传感器信号数据等。和批量数据处理方式对应,对无界数据集的数据处理方式被称为流式数据处理,简称为流处理(Streaming Process)。可以看出,流式数据处理过程实现复杂度会更高,因为需要考虑处理过程中数据的顺序错乱,以及系统容错等方面的问题,因此流处理需要借助专门的流数据处理技术。目前业界的Apache Storm、Spark Streaming、Apache Flink等分布式计算引擎都能不同程度地支持处理流式数据。

有界数据集和无界数据集只是一个相对的概念,主要根据时间的范围而定,可以认为一段时间内的无界数据集其实就是有界数据集,同时有界数据也可以通过一些方法转换为无界数据。例如系统一年的订单交易数据,其本质上应该是有界的数据集,可是当我们把它一条一条按照产生的顺序发送到流式系统,通过流式系统对数据进行处理,在这种情况下可以认为数据是相对无界的。对于无界数据也可以拆分成有界数据进行处理,例如将系统产生的数据接入到存储系统,按照年或月进行切割,切分成不同时间长度的有界数据集,然后就可以通过批处理方式对数据进行处理。从以上分析我们可以得出结论:有界数据和无界数据其实是可以相互转换的。