Codeforces Round #734 (Div. 3)-A. Polycarp and Coins-题解

78 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

@TOC

Codeforces Round #734 (Div. 3)-A. Polycarp and Coins

传送门 Time Limit: 1 second Memory Limit: 256 megabytes

Problem Description

Polycarp must pay exactly nn burles at the checkout. He has coins of two nominal values: 11 burle and 22 burles. Polycarp likes both kinds of coins equally. So he doesn't want to pay with more coins of one type than with the other.

Thus, Polycarp wants to minimize the difference between the count of coins of 11 burle and 22 burles being used. Help him by determining two non-negative integer values c1c_1 and c2c_2 which are the number of coins of 11 burle and 22 burles, respectively, so that the total value of that number of coins is exactly nn (i. e. c1+2c2=nc_1 + 2 \cdot c_2 = n), and the absolute value of the difference between c1c_1 and c2c_2 is as little as possible (i. e. you must minimize c1c2|c_1-c_2|).

Input

The first line contains one integer tt (1t1041 \le t \le 10^4) — the number of test cases. Then tt test cases follow.

Each test case consists of one line. This line contains one integer nn (1n1091 \le n \le 10^9) — the number of burles to be paid by Polycarp.

Output

For each test case, output a separate line containing two integers c1c_1 and c2c_2 (c1,c20c_1, c_2 \ge 0) separated by a space where c1c_1 is the number of coins of 11 burle and c2c_2 is the number of coins of 22 burles. If there are multiple optimal solutions, print any one.

Sample Input

6
1000
30
1
32
1000000000
5

Sample Onput

334 333
10 10
1 0
10 11
333333334 333333333
1 2

Note

The answer for the first test case is "334 333". The sum of the nominal values of all coins is 3341+3332=1000334 \cdot 1 + 333 \cdot 2 = 1000, whereas 334333=1|334 - 333| = 1. One can't get the better value because if c1c2=0|c_1 - c_2| = 0, then c1=c2c_1 = c_2 and c11+c12=1000c_1 \cdot 1 + c_1 \cdot 2 = 1000, but then the value of c1c_1 isn't an integer.

The answer for the second test case is "10 10". The sum of the nominal values is 101+102=3010 \cdot 1 + 10 \cdot 2 = 30 and 1010=0|10 - 10| = 0, whereas there's no number having an absolute value less than 00.


题目大意

有两种钞票,面值分别是1元和2元。 买一个物品,想让使用两种钞票的数量的绝对值只差最小,请问两种钞票分别用几张。

解题思路

一张1元+一张2元是3元。先看金额中有多少个3,这些3都用相等数量的两种钞票构成。 多余的钱只能是0,1,2。如果是0就正好,是1就再来一张1元的,是2就再来一张2元的。


AC代码

#include <bits/stdc++.h>
using namespace std;
#define mem(a) memset(a, 0, sizeof(a))
#define dbg(x) cout << #x << " = " << x << endl
#define fi(i, l, r) for (int i = l; i < r; i++)
#define cd(a) scanf("%d", &a)
typedef long long ll;
int main()
{
    int N;
    cin>>N;
    while(N--)
    {
        int n;
        cin>>n;
        int t=n/3;
        int t2=t;
        int s=n%3;
        if(s==0);
        else if(s==1)t++;
        else if(s==2)t2++;
        printf("%d %d\n",t,t2);
    }
    return 0;
}

同步发文于我的CSDN,原创不易,转载请附上原文链接哦~
Tisfy:letmefly.blog.csdn.net/article/det…