这是我参与「第四届青训营 」笔记创作活动的的第8天
HDFS优点
1、高容错性
数据自动保存多个副本
副本丢失后,自动恢复
2、适合批处理
移动计算而非数据
数据位置暴露给计算框架
3、适合大数据处理
GB、TB、甚至PB级数据
百万规模以上的文件数量
10K+节点规模
4、流式文件访问
一次性写入,多次读取
保证数据一致性
5、可构建在廉价机器上
通过多副本提高可靠性
提供了容错和恢复机制
HDFS缺点
1、低延迟数据访问
比如毫秒级-达不到
低延迟与高吞吐率
2、小文件存取
占用NameNode大量内存
寻道时间超过读取时间
3、并发写入、文件随机修改
一个文件只能有一个写者
仅支持append
分布式文件系统的一种实现方式:把大文件根据规则切分成小文件存储在不同的机器上
HDFS基本架构和原理
HDFS设计思想
HDFS数据块
1、文件被切分成固定大小的数据块
默认数据块大小为128MB,可配置
若文件大小不到128MB,则单独存成一个block
2、为何数据块如此之大
数据传输时间超过寻道时间(高吞吐率)
3、一个文件存储方式
按大小被切分成若干个block,存储到不同节点上
默认情况下每个block有三个副本[最小的2N+1>1]
HDFS写流程
HDFS读流程
HDFS不适合存储小文件
1、元信息存储在NameNode内存中
一个节点的内存是有限的
2、存取大量小文件消耗大量的寻道时间
类比拷贝大量小文件与拷贝同等大小的一个大文件
3、NameNode存储block数目是有限的
一个block元信息消耗大约150 byte内存
存储1亿个block,大约需要20GB内存
如果一个文件大小为10K,则1亿个文件大小仅为1TB(但要消耗掉NameNode 20GB内存)