JUC-基本概念

122 阅读8分钟

上下文切换

定义

  • CPU通过给每个线程分配CPU时间片来实现 这个机制。时间片是CPU分配给各个线程的时间,因为时间片非常短,所以CPU通过不停地切 换线程执行,让我们感觉多个线程是同时执行的,时间片一般是几十毫秒(ms)。
  • CPU通过时间片分配算法来循环执行任务,当前任务执行一个时间片后会切换到下一个 任务。但是,在切换前会保存上一个任务的状态,以便下次切换回这个任务时,可以再加载这 个任务的状态。所以任务从保存到再加载的过程就是一次上下文切换

减少上下文切换方法

  • 减少上下文切换的方法有无锁并发编程、CAS算法、使用最少线程和使用协程。
  • 无锁并发编程:多线程竞争锁时,会引起上下文切换,所以多线程处理数据时,可以用一 些办法来避免使用锁,如将数据的ID按照Hash算法取模分段,不同的线程处理不同段的数据。
  • CAS算法:Java的Atomic包使用CAS算法来更新数据,而不需要加锁。 ·
  • 使用最少线程:避免创建不需要的线程,比如任务很少,但是创建了很多线程来处理,这 样会造成大量线程都处于等待状态。
  • 协程:在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换。

进程,线程,协程

进程

  • 直观点说,保存在硬盘上的程序运行以后,会在内存空间里形成一个独立的内存体,这个内存体有自己独立的地址空间,有自己的堆,上级挂靠单位是操作系统。操作系统会以进程为单位,分配系统资源(CPU时间片、内存等资源),进程是资源分配的最小单位

进程间通信(IPC)

  • 管道(Pipe)、命名管道(FIFO)、消息队列(Message Queue) 、信号量(Semaphore) 、共享内存(Shared Memory);套接字(Socket)。

线程

  线程,有时被称为轻量级进程(Lightweight Process,LWP),是操作系统调度(CPU调度)执行的最小单位

进程和线程的区别与联系

【区别】:

  • 调度:线程作为调度和分配的基本单位,进程作为拥有资源的基本单位;

  • 并发性:不仅进程之间可以并发执行,同一个进程的多个线程之间也可并发执行;

  • 拥有资源:进程是拥有资源的一个独立单位,线程不拥有系统资源,但可以访问隶属于进程的资源。进程所维护的是程序所包含的资源(静态资源), 如:地址空间,打开的文件句柄集,文件系统状态,信号处理handler等;线程所维护的运行相关的资源(动态资源),如:运行栈,调度相关的控制信息,待处理的信号集等;

  • 系统开销:在创建或撤消进程时,由于系统都要为之分配和回收资源,导致系统的开销明显大于创建或撤消线程时的开销。但是进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个进程死掉就等于所有的线程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。

【联系】:

  • 一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程;
  • 资源分配给进程,同一进程的所有线程共享该进程的所有资源;
  • 处理机分给线程,即真正在处理机上运行的是线程;
  • 线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。

协程

  • 协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
  • 协程,在执行过程中可中断去执行其他任务,执行完毕后再回来继续原先的操作——可以理解为两个或多个程序协同工作。
  • 协程特点在于单线程执行。
  • 优势一:具有极高的执行效率,因为在任务切换的时候是程序之间的切换(由程序自身控制)而不是线程间的切换,所以没有线程切换导致的额外开销(时间浪费),线程越多,携程性能优势越明显。
  • 优势二:由于是单线程工作,没有多线程需要考虑的同时写变量冲突,所以不需要多线程的锁机制,故执行效率比多线程更高。

死锁

什么是死锁?

  • 所谓死锁,是指多个进程在运行过程中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。 因此我们举个例子来描述,如果此时有一个线程A,按照先锁a再获得锁b的的顺序获得锁,而在此同时又有另外一个线程B,按照先锁b再锁a的顺序获得锁。如下图所示:

产生死锁的原因?

可归结为如下两点:

a. 竞争资源

系统中的资源可以分为两类:

  • 可剥夺资源,是指某进程在获得这类资源后,该资源可以再被其他进程或系统剥夺,CPU和主存均属于可剥夺性资源;
  • 另一类资源是不可剥夺资源,当系统把这类资源分配给某进程后,再不能强行收回,只能在进程用完后自行释放,如磁带机、打印机等。
  • 产生死锁中的竞争资源之一指的是竞争不可剥夺资源(例如:系统中只有一台打印机,可供进程P1使用,假定P1已占用了打印机,若P2继续要求打印机打印将阻塞)
  • 产生死锁中的竞争资源另外一种资源指的是竞争临时资源(临时资源包括硬件中断、信号、消息、缓冲区内的消息等),通常消息通信顺序进行不当,则会产生死锁 b. 进程间推进顺序非法,若P1保持了资源R1,P2保持了资源R2,系统处于不安全状态,因为这两个进程再向前推进,便可能发生死锁 例如,当P1运行到P1:Request(R2)时,将因R2已被P2占用而阻塞;当P2运行到P2:Request(R1)时,也将因R1已被P1占用而阻塞,于是发生进程死锁

死锁产生的4个必要条件?

  • 互斥条件:进程要求对所分配的资源进行排它性控制,即在一段时间内某资源仅为一进程所占用。
  • 请求和保持条件:当进程因请求资源而阻塞时,对已获得的资源保持不放。
  • 不剥夺条件:进程已获得的资源在未使用完之前,不能剥夺,只能在使用完时由自己释放。
  • 环路等待条件:在发生死锁时,必然存在一个进程--资源的环形链。

解决死锁的基本方法

预防死锁:

  • 资源一次性分配:一次性分配所有资源,这样就不会再有请求了:(破坏请求条件)
  • 只要有一个资源得不到分配,也不给这个进程分配其他的资源:(破坏请求保持条件)
  • 可剥夺资源:即当某进程获得了部分资源,但得不到其它资源,则释放已占有的资源 (破坏不可剥夺条件)
  • 资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反 (破坏环路等待条)

避免死锁:

预防死锁的几种策略,会严重地损害系统性能。因此在避免死锁时,要施加较弱的限制,从而获得 较满意的系统性能。由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全的状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法

  • 银行家算法:首先需要定义状态和安全状态的概念。系统的状态是当前给进程分配的资源情况。因此,状态包含两个向量Resource(系统中每种资源的总量)和Available(未分配给进程的每种资源的总量)及两个矩阵Claim(表示进程对资源的需求)和Allocation(表示当前分配给进程的资源)。安全状态是指至少有一个资源分配序列不会导致死锁。当进程请求一组资源时,假设同意该请求,从而改变了系统的状态,然后确定其结果是否还处于安全状态。如果是,同意这个请求;如果不是,阻塞该进程直到同意该请求后系统状态仍然是安全的。