携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第5天,点击查看活动详情
AcWing 842. 排列数字
给定一个整数 n,将数字 1∼n 排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式
共一行,包含一个整数 n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1 ≤ n ≤ 7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
思路
使用 dfs解决全排列问题
dfs是深度优先搜索
例如: n = 3
假设有 3 个空位,从前往后填数字,每次填一个位置,填的数字不能和前面一样。
最开始的时候,三个空位都是空的:__ __ __
首先填写第一个空位,第一个空位可以填 1,填写后为:1 __ __
填好第一个空位,填第二个空位,第二个空位可以填 2,填写后为:1 2 __
填好第二个空位,填第三个空位,第三个空位可以填 3,填写后为: 1 2 3
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:1 2 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 3 ,没有其他数字可以填。
因此再往后退一步,退到了状态:1 __ __。第二个空位上除了填过的 2,还可以填 3。第二个空位上填写 3,填写后为:1 3 __
填好第二个空位,填第三个空位,第三个空位可以填 2,填写后为: 1 3 2
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:1 3 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 2,没有其他数字可以填。
因此再往后退一步,退到了状态:1 __ __。第二个空位上除了填过的 2,3,没有其他数字可以填。
因此再往后退一步,退到了状态:__ __ __。第一个空位上除了填过的 1,还可以填 2。第一个空位上填写 2,填写后为:2 __ __
填好第一个空位,填第二个空位,第二个空位可以填 1,填写后为:2 1 __
填好第二个空位,填第三个空位,第三个空位可以填 3,填写后为:2 1 3
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:2 1 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 3,没有其他数字可以填。
因此再往后退一步,退到了状态:2 __ __。第二个空位上除了填过的 1,还可以填 3。第二个空位上填写 3,填写后为:2 3 __
填好第二个空位,填第三个空位,第三个空位可以填 1,填写后为:2 3 1
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:2 3 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 1,没有其他数字可以填。
因此再往后退一步,退到了状态:2 __ __。第二个空位上除了填过的 1,3,没有其他数字可以填。
因此再往后退一步,退到了状态:__ __ __。第一个空位上除了填过的 1,2,还可以填 3。第一个空位上填写 3,填写后为:3 __ __
填好第一个空位,填第二个空位,第二个空位可以填 1,填写后为:3 1 __
填好第二个空位,填第三个空位,第三个空位可以填 2,填写后为:3 1 2
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:3 1 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 2,没有其他数字可以填。
因此再往后退一步,退到了状态:3 __ __。第二个空位上除了填过的 1,还可以填 2。第二个空位上填写 2,填写后为:3 2 __
填好第二个空位,填第三个空位,第三个空位可以填 1,填写后为:3 2 1
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:3 2 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 1,2,没有其他数字可以填。
因此再往后退一步,退到了状态:3 __ __。第二个空位上除了填过的 1,2,没有其他数字可以填。
因此再往后退一步,退到了状态:__ __ __。第一个空位上除了填过的 1,2,3,没有其他数字可以填。
此时深度优先搜索结束,输出了所有的方案。
用 path 数组保存排列,当排列的长度为 n 时,是一种方案,输出。
用 state 数组表示数字是否用过。当 state[i] 为 1 时:i 已经被用过,state[i] 为 0 时,i 没有被用过。
dfs(i) 表示的含义是:在 path[i] 处填写数字,然后递归的在下一个位置填写数字。
回溯:第 i 个位置填写某个数字的所有情况都遍历后, 第 i 个位置填写下一个数字。
时间复杂度为 O(n*n!)。
空间复杂度为 O(n)。
ac代码
#include <iostream>
using namespace std;
const int N = 10;
int n;
int path[N];
bool st[N];
void dfs(int u){
if (u == n){ //终止条件,输出结果
for (int i = 0; i < n; i ++ ) cout << path[i] << ' ';
cout << endl;
return;
}
for (int i = 1; i <= n; i ++ ){ //
if (!st[i]){ //如果没有使用过
path[u] = i ; //填入没有被使用过的数字
st[i] = true; //标记为使用了
dfs(u + 1); //进行下一个位置的计算
st[i] = false; //回溯
}
}
}
int main(){
scanf("%d", &n);
dfs(0); //从第0个位置开始计算
return 0;
}
#include <iostream>
using namespace std;
const int N = 10;
int n;
int path[N];
void dfs(int u, int state){
if (u == n){
for (int i = 0; i < n; i ++ ) cout << path[i] << ' ';
cout << endl;
return;
}
for (int i = 1; i <= n; i ++ ){
if (!(state >> i & 1)){//如果第i位是1,表示当前数已经被用过了,否则表示没被用过。所以如果i已经被用过了,则需要跳过
path[u] = i;
dfs(u + 1, state + (1 << i));
}
}
}
int main(){
scanf("%d", &n);
dfs(0, 0);
return 0;
}