本文已参与「新人创作礼」活动, 一起开启掘金创作之路。
102. 二叉树的层序遍历
来源:力扣(LeetCode)
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:
输入:root = [1]
输出:[[1]]
示例 3:
输入:root = []
输出:[]
提示:
树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000
解法
- 递归: 给定的node以及层,判断层数是否与结果的长度相同,如果是相同,说明该node应该放入该层中,注意是从第0层开始。
- BFS:层序遍历,使用一个列表维持当前层的节点。当前层的长度来控制遍历的次数,如果有左右子节点,将其加到列表中;
代码实现
递归
python实现
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
if not root:
return []
levels = []
def helper(node, level):
if len(levels) == level:
levels.append([])
levels[level].append(node.val)
if node.left:
helper(node.left, level+1)
if node.right:
helper(node.right, level+1)
helper(root, 0)
return levels
c++实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
vector<vector<int>> res;
public:
void helper(TreeNode* node, int level) {
if (res.size() == level)
res.push_back({});
res[level].push_back(node->val);
if (node->left)
helper(node->left, level+1);
if (node->right)
helper(node->right, level+1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
if (root == nullptr)
return res;
helper(root, 0);
return res;
}
};
复杂度分析
- 时间复杂度:
- 空间复杂度:
BFS
python实现
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
# bfs
if not root:
return []
queue = []
res = []
queue.append(root)
while queue:
level_res = []
for i in range(len(queue)):
node = queue.pop(0)
level_res.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
res.append(level_res)
return res
c++实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
if (root == nullptr)
return {};
queue<TreeNode*> q;
vector<vector<int>> res;
q.push(root);
while (q.size() != 0) {
vector<int> tmp;
int level_wide = q.size();
for(int i=0; i<level_wide; i++) {
TreeNode* node = q.front();
q.pop();
tmp.push_back(node->val);
if(node->left != nullptr)
q.push(node->left);
if (node->right != nullptr)
q.push(node->right);
}
res.push_back(tmp);
}
return res;
}
};
复杂度分析
- 时间复杂度: , 每个点进队出队各一次,故渐进时间复杂度为 O(n)
- 空间复杂度: , 队列中元素的个数不超过 n 个,故渐进空间复杂度为 O(n)