Codeforces Round #698 (Div. 2) - A. Nezzar and Colorful Balls

116 阅读2分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

Codeforces Round #698 (Div. 2)-A. Nezzar and Colorful Balls

传送门 Time Limit: 1 second Memory Limit: 512 megabytes

Problem Description

Nezzar has nn balls, numbered with integers 1,2,,n1, 2, \ldots, n. Numbers a1,a2,,ana_1, a_2, \ldots, a_n are written on them, respectively. Numbers on those balls form a non-decreasing sequence, which means that aiai+1a_i \leq a_{i+1} for all 1i<n1 \leq i < n.

Nezzar wants to color the balls using the minimum number of colors, such that the following holds.

Note that a sequence with the length at most 11 is considered as a strictly increasing sequence.

Please help Nezzar determine the minimum number of colors.

Input

The first line contains a single integer tt (1t1001 \le t \le 100) — the number of testcases.

The first line of each test case contains a single integer nn (1n1001 \le n \le 100).

The second line of each test case contains nn integers a1,a2,,ana_1,a_2,\ldots,a_n (1ain1 \le a_i \le n). It is guaranteed that a1a2ana_1 \leq a_2 \leq \ldots \leq a_n.

Output

For each test case, output the minimum number of colors Nezzar can use.

Sample Input

5
6
1 1 1 2 3 4
5
1 1 2 2 3
4
2 2 2 2
3
1 2 3
1
1

Sample Onput

3
2
4
1
1

Note

Let's match each color with some numbers. Then:

In the first test case, one optimal color assignment is [1,2,3,3,2,1][1,2,3,3,2,1].

In the second test case, one optimal color assignment is [1,2,1,2,1][1,2,1,2,1].


题目大意

给n个气球,每个气球都有编号 现在给气球涂色 相同编号的气球颜色不能相同,问至少需要几种颜色。


解题思路

很显然,看哪个编号的气球最多,就需要这么多的颜色。

题目很友好,给的编号都是按顺序的,因此就不需要再排序了。

下面用一种空间消耗比较小的方法,输入完毕即可得到答案。 用变量last记录上一个气球的编号,如果这个气球编号不同于上一个,就更新最大值M。 初始值last = -1,这样第一个气球就会与它颜色不同。

用变量locLast记录上次是第几个气球(第一个气球按第0个处理)。

AC代码

#include <bits/stdc++.h>
using namespace std;
int main()
{
	int N;
	cin >> N;
	while (N--)
	{
		int n;
		cin >> n;
		int last = -1;     //上一个气球的编号
		int M = 1;
		int locLast = -1;  //这个颜色的气球的上一个location
		for (int i = 0; i < n; i++)
		{
			int t;
			scanf("%d", &t); //这个气球的编号
			if (t != last) //这个气球编号和上一个不同
			{
				last = t;  //更新last
				M = max(M, i - locLast); //更新最大值M
				locLast = i; //更新locLast
			}
		}
		/*最后一个气球与倒数第二个气球编号相同的话,最后一个气球没有更新。
		可以理解为多加上一个编号为-1的气球,这个气球loc=n*/
		M = max(n - locLast, M); 
		printf("%d\n", M);
	}
	return 0;
}

时间复杂度 O(n) 空间复杂度 O(1)

同步发文于我的CSDN