numpyroots() 函数用于使用系数值找到多项式方程的根。
该函数的语法如下:
numpy.roots([n])
根接受一个多项式系数的数组作为[n, n, ...] ,并返回该方程的根。
如果数组的长度是n+1 ,那么多项式的描述是:
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
例如,如果你有以下方程:x2 - 5x + 6
系数为1,-5, 和6 。
使用root() 函数来解决寻找根:
import numpy as np
np.roots([1, -5, 6])
# array([3., 2.])
所以x = 3, 2
你也可以传递一个浮动的数字作为其中一个系数值:
import numpy as np
coeff = [3.7, 2, 1]
np.roots(coeff)
输出结果将是:
array([-0.27027027+0.44409937j, -0.27027027-0.44409937j])
这就是numpy.roots() 函数的工作原理。