ConcurrentHashMap

122 阅读9分钟

HashMap并发问题

在多线程环境中,HashMap的put方法有可能会导致程序的死循环,这是因为多线程下可能会使HashMap形成环形链表,即链表的一个节点的next节点永不为null就会导致死循环,CPU100%。

HashMap死链的问题主要是在hashMap的扩容操作,也就是transfer()方法

    void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
        for (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                //A
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
                //将新元素加入 newTable[i], 原 newTable[i] 作为新元素的 next
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

  • 在多线程情况下,假设该链表元素为:(1,35)->(35,16)->(16,null)
  • 当我们线程一执行到A处被挂起此时局部变量e的值为 (1,35),next为: (35,16),
  • 然后线程2开始执行,发生扩容,对链表的元素进行移动,扩容完成后,该链表元素为: (35,1)->(1,null)
  • 然后切回线程1,此时变量e和next被恢复,引用没变但是内容发生改变,此时局部变量e的值变为(1,null),next为(35,1),并链向(1,null)
  • 然后将内容赋值给新链表,循环一次后,链表的内容为:(1,null)
  • 第二次循环为后链表元素为:(35,1) -> (1,null)
  • 因为线程2对链表进行了重组此时链表元素(35,1)指向(1,null),所以next = (1,null)
  • 再次进行循环,e = (1,null),next = null 但是由于jdk7的头插法,e被放入了链表头,所有next变成了35 链表内容为(1,35)->(35,1)->(1,35),此时就发生了死链情况,也就是死循环

JDK1.8中将扩容算法做了调整,将头插法改为尾插法,避免了死链的问题,但仍不意味着能够在多线程环境下能够安全扩容,还会出现其它问题(如扩容丢数据)

解决方案

  • 使用HashTable代替HashMap
  • Collections.synchronizedMap将HashMap包装起来
  • ConcurrentHashMap替换HashMap

HashTable虽然是线程安全的,但是效率低下,当一个线程访问HashTable的同步方法时其他线程如果也访问HashTable的同步方法,那么会进入阻塞或者轮询状态

ConcurrentHashMap 源码分析(1.8)

在JDK1.8中ConcurrentHashMap弃用了Segment分段锁机制,利用CAS+Synchronized来保证并发更新的安全,底层任然采用数组加链表的存储结构

1、属性

// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表 volatile+cas自旋锁
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}
//sizeCtl=0代表数组未初始化 >0 如果数组未初始化,那么其记录的是数组的初始容量,如果数组已经初始化,那么其记录的是数组的扩容阈值
// = -1 代表数组正在进行初始化
//<0 != -1 表示数组正在扩容, -(1+n),表示此时有n个线程正在共同完成数组的扩容操作
private transient volatile int sizeCtl;

3、构造函数

/**
*  初始容量 负载因子(默认0.75) 并发级别
*  这里采用了懒汉式的方式,构造只初始化大小的属性,不真正创建
*/
public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        //根据负载因子以及初始长度计算容量
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        //tableSizeFor方法保证计算的值为2的n次方
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

get()

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        //spread保证计算的hash值不为负数
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            //根据hash找到元素所在的数组下标找到链表
            (e = tabAt(tab, (n - 1) & h)) != null) {
            //如果头节点就是要查找的key就直接返回
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            //如果hash为负数则表示该bin在扩容或者为树形,这是调用find方法来查找
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            //循环遍历链表
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

put()添加元素

当添加元素时,会针对当前元素所对应的通位进行加锁操作,这样一方面保证元素添加时多线程的安全,提示对某个桶位加锁不会影响其他桶位的操作,进一步提升多线程的并发效率

public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        //计算hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            //f是链表头节点,fh是链表头节点的hash i是链表在数组中的下标
            Node<K,V> f; int n, i, fh;
            //如果第一次添加就去初始化数组 使用cas 无需synchronized 创建成功 进入下一轮循环
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //创建链表头节点    
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                //使用cas自旋添加链表头
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            //如果hash为-1则代表正在扩容,则当前线程会帮忙进行扩容
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //使用synchronized锁住当前链表头节点
                synchronized (f) {
                    //确认头节点没有被移动
                    if (tabAt(tab, i) == f) {
                    //链表结构
                        if (fh >= 0) {
                            binCount = 1;
                            //遍历链表
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //找到相同的key就赋值然后跳出循环
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                //遍历到最后节点还没有相同的key就增加node节点 至链表末尾
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        //红黑树结构
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                    //释放锁
                }
                if (binCount != 0) {
                //如果链表长度 >= 树化阈值就将链表转为红黑树
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 增加 size 计数
        addCount(1L, binCount);
        return null;
    }

initTable():初始化方法

  private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            //如果sizeCtl < 0代表有线程正在初始化数组,则当前线程就yield让出cpu资源
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
                //尝试将sizectl设置为-1代表正在初始化数组
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                //获得锁,去创建数组
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

addCount(long x, int check)

// check 是之前 binCount 的个数
    private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        // 已经有了 counterCells, 向 cell 累加
        if ((as = counterCells) != null ||
        // 还没有, 向 baseCount累加
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            // 还没有 counterCells
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                // cell cas 增加计数失败
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                  // 创建累加单元数组和cell, 累加重试
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
                // 获取元素个数
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                        // newtable 已经创建了,帮忙扩容
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                // 需要扩容,这时 newtable 未创建
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

size() 计算 size 计算实际发生在 put,remove 改变集合元素的操作之中

  • 没有竞争发生,向baseCount累加计数
public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 :
        (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
        (int)n);
}
final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a;
    // 将 baseCount 计数与所有 cell 计数累加
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum; 
} 

扩容安全

transfer()源码

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        //如果是多CPU,那么每个线程划分任务,最小任务量是16个桶位的迁移
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        //扩容线程新数组为null
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                //两倍扩容创建新数组
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            //记录线程开始迁移的桶位,从后往前迁移
            transferIndex = n;
        }
        //记录新数组的长度
        int nextn = nextTab.length;
        //已经迁移的桶位会用forwardingNode节点占位
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                //i代表当前正在迁移的桶位的索引值 bound代表下一次任务迁移开始的桶位
                //如果--i >= bound 则代表当前线程分配的迁移任务还没有完成
                if (--i >= bound || finishing)
                    advance = false;
                    //没有元素需要迁移 后续会将扩容线程数-1 并哦按段扩容是否完成
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                //计算下一次任务迁移的开始桶位,并复制诶transferIndex
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            //没有其他需要迁移的桶 
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                //扩容结束后就保存新数组,并计算扩容阈值 赋值给sizeCtl
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                //扩容任务数-1
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    //判断当前所有客人任务线程是否都执行完成
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            //如果当前迁移的桶位没有元素,则直接在该位置添加一个fwd节点
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
                //当前节点已被迁移
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
            //加锁迁移
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

jdk8 使用数组+链表+红黑树的结构

  • 初始化,使用cas来保证并发安全,懒惰初始化table
  • 树化,当数组长度 < 64 时,会先尝试扩容,如果扩容到64 并且链表长度依旧大于8,此时会将该链表树化,树化过程会有synchronized锁住链表头
  • put,如果该链表尚未创建,只需要使用cas来创建bin,如果已经创建了,就锁住链表头进行put操作,使用尾插法插入链表尾部
  • get,无锁操作仅需要保证可见性 扩容过程中 get 操作拿到的是 ForwardingNode 它会让 get 操作在新table 进行搜索
  • 扩容:扩容时以链表为单位进行,需要对链表进行synchronized,但是此时其他竞争线程并不是阻塞等待,而是会帮组其他链表进行扩容,扩容时平均只有1/6的节点会把复制到新table中
  • size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中。最后统计数量时累加

ConturrentHashMap源码分析(JDK1.7)

ConcurrentHashMap在JDK1.7采用分段所的机制,实现并发的更新操作,底层由Segment数组和HashEntry数组组成。Segment继承自ReentrantLock来充当锁的角色,每个Segment对象守护每个散列映射表的若干个桶,HashEntry用来封装映射表的键值对,每个Segment元素中保存了一个默认长度为2的HashEntry[]

重要属性 HashEntry:HashEntry是ConcurrentHashMap中存储数据的对象

static final class HashEntry<K,V> {
        //hash值
        final int hash;
        //键
        final K key;
        //值 使用volatile保证并发时数据获取的可见性
        volatile V value;
        //下一个元素
        volatile HashEntry<K,V> next;

        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
}

segment

构造方法

public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
            
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        //计算segment[]长度,确保为2的幂次方
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //计算每个segment中的元素个数
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        //矫正segment中存储元素的个数,保证时2的幂次方
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        //根据cap和负载因子等属性创建模板segment对象
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        //使用unsafe类将创建的segment对象存入0角标位置
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

put方法

    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        //计算Hash值
        int hash = hash(key);
        //根据hash值计算segment[]的索引
        int j = (hash >>> segmentShift) & segmentMask;
        //判断该索引位的segment对象是否创建,没有的话就去创建
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
            //调用segment的put方法实现元素的添加
        return s.put(key, hash, value, false);
    }

ensureSegment方法 该方法的作用是创建当前索引位的Segment对象并返回

private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
        //根据初始化时0角标的segment模板对象创建
        Segment<K,V> proto = ss[0]; // use segment 0 as prototype
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        //在创建前再判断是否为null
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
            == null) { // recheck
            //创建
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            //通过cas紫炫方式将Segment对象放到sement[]中,确保线程的安全
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

Segment的put方法

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    //尝试获取lock锁,如果获取成功 node为null,如果由其他线程占据锁对象,那么去做别的事情,提升效率
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        HashEntry<K,V>[] tab = table;
        //计算hashEntry的索引
        int index = (tab.length - 1) & hash;
        //获取所有位ide元素对象
        HashEntry<K,V> first = entryAt(tab, index);
        for (HashEntry<K,V> e = first;;) {
            //如果获取的元素的不为空
            if (e != null) {
                K k;
                //如果时重复的元素,则覆盖原值
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                //如果不是重复元素,则获取链表下一个元素,循环遍历链表
                e = e.next;
            }
            else {
            //如果当前获取到的元素为空,并且HashEntry对象已经创建,则使用头插法关联
                if (node != null)
                    node.setNext(first);
                else
                    //创建当前添加的键值对的HashEntry对象
                    node = new HashEntry<K,V>(hash, key, value, first);
                //添加的元素数量+1
                int c = count + 1;
                //判断是否需要扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else
                //将当前添加的元素对象存入数组角标位
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        unlock();
    }
    return oldValue;
}

Segment的scanAndLockForPut方法

该方法再没有获取到锁的情况下,去完成HashEntry对象的创建,提升效率

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    //获取头部元素
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
    //尝试获取锁失败
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                //如果没有下一个节点并且也不是重复元素,就直接去创建HashEntry对象
                if (node == null) // speculatively create node
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                e = e.next;
        }
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

rehash扩容方法

private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    //两倍扩容
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    //基于新的容量创建HashEntry数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    int sizeMask = newCapacity - 1;
    //进行数据迁移
    for (int i = 0; i < oldCapacity ; i++) {
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            int idx = e.hash & sizeMask;
            if (next == null)   //  Single node on list
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                HashEntry<K,V> lastRun = e;
                int lastIdx = idx;
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                newTable[lastIdx] = lastRun;
                // Clone remaining nodes
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}