今天,来分享下同步锁synchronized的底层原理,其实很多时候我们会把synchronized和Lock锁进行比较,先来看看synchronized的底层原理,后面在讲解Lock锁的原理。
同步器的本质就是加锁,加锁的目的就是进行访问临界资源,学过操作系统的应该都知道的,什么是临界资源,即同一时刻只能有一个线程访问临界资源。synchronized是一种对象锁,作用粒度是对象,可以用来实现对临界资源的同步互斥访问,加锁的方式有:
- 1、同步实例方法,锁是当前实例对象
- 2、同步类方法,锁是当前类对象
- 3、同步代码块,锁是括号里面的对象
那么synchronized底层是怎么实现的,而性能又是怎样? synchronized是基于JVM内置锁实现,通过内部对象Monitor(监视器锁)实现,基于进入与退出Monitor对象实现方法与代码块同步,监视器锁的实现依赖底层操作系统的Mutex lock(互斥锁)实现,它是一个重量级锁性能较低。当然,JVM内置锁在1.5之后版本做了重大的优化,如锁粗化(Lock Coarsening)、锁消除(Lock Elimination)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)、适应性自旋(Adaptive Spinning)等技术来减少锁操作的开销,目前,内置锁的并发性能已经基本与Lock持平。
synchronized关键字被编译成字节码后会被翻译成monitorenter 和 monitorexit 两条指令分别在同步块逻辑代码的起始位置与结束位置。
每个同步对象都有一个自己的Monitor(监视器锁),加锁过程如下图所示:
Monitor监视器锁
任何一个对象都有一个Monitor与之关联,但是只有一个Monitor被持有后,处于锁定状态。Synchronized在JVM里的实现都是基于进入和退出Monitor对象来实现方法同步和代码块同步,通过成对的MonitorEnter和MonitorExit指令来实现。
monitorenter:每个对象都是一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,那么具体是怎么进行交互的呢?具体过程如下:
1、如果当前monitor的进入数为0,则该线程拥有进入monitor的能力,然后将进入数设置为1,该线程即为monitor的所有者;
2、如果线程已经占有该monitor,只是重新进入,则进入monitor的也会加1;
3、 如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝 试获取monitor的所有权;
monitorexit:执行monitorexit的线程必须是objectref所对应的monitor的所有者。指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。如果monitorexit指令出现了两次,那么第1次为同步正常退出释放锁;第2次为发生异步退出释放锁;
通过上面两段描述,我们应该能很清楚的看出Synchronized的实现原理,大概的知道了Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
我们来看看具体是怎么进行控制的:
public class SynchronizedMethod {
public synchronized void method() {
System.out.println("Hello World!");
}
}
通过反编译可以清楚的看到
从编译的结果来看,方法的同步并没有通过指令 monitorenter 和 monitorexit 来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了 ACC_SYNCHRONIZED 标示符。JVM就是根据该标示符来实现方法的同步的:当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。两种同步方式本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。两个指令的执行是JVM通过调用操作系统的互斥原语mutex来实现,被阻塞的线程会被挂起、等待重新调度,会导致“用户态和内核态”两个态之间来回切换,对性能有较大影响。
接下来说说monitor
monitor是一个对象,也可以说是一种同步的机制,所有的Java对象是天生的Monitor,每一个Java对象都有成为Monitor的潜质,因为在Java的设计中 ,每一个Java对象new出来的时候就拥有一把看不见的锁,它叫做内部锁或者Monitor锁。也就是通常说Synchronized的对象锁,MarkWord锁标识位为10,其中指针指向的是Monitor对象的起始地址。在Java虚拟机(HotSpot)中,Monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的):
ObjectMonitor() {
_header = NULL;
_count = 0; // 记录个数
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL;
_WaitSet = NULL; // 处于wait状态的线程,会被加入到_WaitSet
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ; // 处于等待锁block状态的线程,会被加入到该列表
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
通过上面的C++源码可以看到,ObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表(每个等待锁的线程都会被封装成ObjectWaiter对象 ),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时:
-
首先会进入 _EntryList 集合,当线程获取到对象的monitor后,进入 _Owner区域并把monitor中的owner变量设置为当前线程,同时monitor中的计数器count加1;
-
若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSet集合中等待被唤醒;
-
若当前线程执行完毕,也将释放monitor(锁)并复位count的值,以便其他线程进入获取monitor(锁); 同时,Monitor对象存在于每个Java对象的对象头Mark Word中存储的指针的指向Synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时notify/notifyAll/wait等方法会使用到Monitor锁对象,所以必须在同步代码块中使用。监视器Monitor有两种同步方式:互斥与协作。多线程环境下线程之间如果需要共享数据,需要解决互斥访问数据的问题,监视器可以确保监视器上的数据在同一时刻只会有一个线程在访问。而锁状态是被记录在每个对象的对象头(Mark Word)中,下面我们一起认识一下对象的内存布局
HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
对象头:比如 hash码,对象所属的年代,对象锁,锁状态标志,偏向锁(线程)ID,偏向时间,数组长度(数组对象)等。Java对象头一般占有2个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit,在64位虚拟机中,1个机器码是8个字节,也就是64bit),但是 如果对象是数组类型,则需要3个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
实例数据:存放类的属性数据信息,包括父类的属性信息;
对齐填充:由于虚拟机要求 对象起始地址必须是8字节的整数倍。填充数据不是必须存在的,仅仅是为了字节对齐;
HotSpot虚拟机的对象头包括两部分信息,第一部分是“Mark Word”,用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等,它是实现轻量级锁和偏向锁的关键。这部分数据的长度在32位和64位的虚拟机(暂 不考虑开启压缩指针的场景)中分别为32个和64个Bits,官方称它为“MarkWord”。对象需要存储的运行时数据很多,其实已经超出了32、64位Bitmap结构所能记录的限度,但是对象头信息是与对象自身定义的数据无关的额 外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间。例如在32位的HotSpot虚拟机 中对象未被锁定的状态下,Mark Word的32个Bits空间中的25Bits用于存储对象哈希码(HashCode),4Bits用于存储对象分代年龄,2Bits用于存储锁标志位,1Bit固定为0,在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容如下表所示。 但是如果对象是数组类型,则需要三个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。对象头信息是与对象自身定义的数据无关的额外存储成本,但是考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存存储尽量多的数据,它会根据对象的状态复用自己的存储空间,也就是说,Mark Word会随着程序的运行发生变化。
如果想更加深入了解对象头可以运行时对象头锁状态分析工具JOL,他是OpenJDK开源工具包,引入下方maven依赖
<dependency>
<groupId>org.openjdk.jol</groupId>
<artifactId>jol‐core</artifactId>
<version>0.10</version>
</dependency>
打印markword
System.out.println(ClassLayout.parseInstance(object).toPrintable());
synchronized在JDK1.6时有偏向锁和轻量级锁,后面因性能问题,对synchronized锁进行了一次锁的升级:无锁状态、偏向锁、轻量级锁和重量级锁,默认开启偏向锁的,若偏向锁失败,虚拟机并不会立即升级为重量级锁,它会尝试使用轻量级锁的优化手段同时会更改对象头的指针值,如果轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行自旋锁的优化手段。而最后就会升级到重量级锁。
以上便是对于synchronized的解析,涉及到操作系统、C++源码等内容