一、关系型数据库
关系型数据库是指采用关系模型来组织数据的数据库。简单来说,关系模式就是二维表格模型。
主要代表:SQL Server,Oracle,Mysql,PostgreSQL。
优点
(1).容易理解,二维表的结构非常贴近现实世界,二维表格,容易理解。
(2)使用方便,通用的sql语句使得操作关系型数据库非常方便。
(3)易于维护,数据库的ACID属性,大大降低了数据冗余和数据不一致的概率。
瓶颈
(1 )海量数据的读写效率。
(2) 高扩展性和可用性。
在基于web的结构中,数据库是最难以横向拓展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库没有办法像web Server那样简单的通过添加更多的硬件和服务节点来拓展性能和负载能力。
二、非关系型(Not Only SQL)
1.概念
NoSQL非关系型数据库,主要指那些非关系型的、分布式的,且一般不保证ACID的数据存储系统,主要代表MongoDB,Redis、CouchDB。
NoSQL提出了另一种理念,以键值来存储,且结构不稳定,每一个元组都可以有不一样的字段,这种就不会局限于固定的结构,可以减少一些时间和空间的开销。使用这种方式,为了获取用户的不同信息,不需要像关系型数据库中,需要进行多表查询。仅仅需要根据key来取出对应的value值即可。
2.分类
非关系数据库大部分是开源的,实现比较简单,大都是针对一些特性的应用需求出现的。根据结构化方法和应用场景的不同,分为以下几类。
(1)面向高性能并发读写的key-value数据库
主要特点是具有极高的并发读写性能,例如Redis、Tokyo Cabint等。
应用场景:内容缓存、用户信息比如会话、配置信息、购物车等,主要用于处理大量数据的高访问负载。
(1)临时性(memcached)
所谓临时性就是数据有可能丢失,,memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止时,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据,旧数据会丢失。
(2)永久性(ROMA、Tokyo Tyrant、Flare)
所谓永久性就是数据不会丢失,这里的键值存储是把数据保存在硬盘上,与临时性比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的,但数据不会丢失是它最大的优势。
(3)两者兼备(Redis)
Redis有些特殊,临时性和永久性兼具。Redis首先把数据保存在内存中,在满足特定条件(默认是 15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的键发生变更)的时候将数据写入到硬盘中,这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性,这种类型的数据库特别适合处理数组类型的数据。
在Key-Value数据库中故障产生时不可以进行回滚。 需要储存数据之间的关系。在Key-Value数据库中不能通过两个或以上的键来关联数据。
(2)面向海量数据访问的面向文档数据库
特点:文档数据库将数据以文档的形式储存,类似 JSON,是一系列数据项的集合。每个数据项都有一个名称与对应的值,值既可以是简单的数据类型,如字符串、数字和日期等;也可以是复杂的类型,如有序列表和关联对象。
优点:数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构。
缺点:查询性能不高,缺乏统一的查询语法。
在不同的文档上添加事务。Document-Oriented数据库并不支持文档间的事务,如果对这方面有需求则不应该选用这个解决方案。
应用场景:日志、 Web 应用等。
NoSQL 代表:MongoDB、CouchDB...
(3)面向可拓展的分布式数据库
解决的主要问题是传统数据库的扩展性上的缺陷。
(4)列(Wide Column Store/Column-Family)存储
特点:列存储数据库将数据储存在列族(Column Family)中,将多个列聚合成一个列族,键仍然存在,但是它们的特点是指向了多个列。举个例子,如果我们有一个 Person 类,我们通常会一起查询他们的姓名和年龄而不是薪资。这种情况下,姓名和年龄就会被放入一个列族中,而薪资则在另一个列族中。
优点:列存储查找速度快,可扩展性强,更容易进行分布式扩展,适用于分布式的文件系统,应对分布式存储的海量数据。
缺点:查询性能不高,缺乏统一的查询语法。
应用场景:日志、 分布式的文件系统(对象存储)、推荐画像、时空数据、消息/订单等。
NoSQL 代表:Cassandra、HBase...
(5)图形(Graph-Oriented)存储
特点:图形数据库允许我们将数据以图的方式储存。
优点:图形相关算法。比如最短路径寻址,N 度关系查找等。
缺点:很多时候需要对整个图做计算才能得出需要的信息,分布式的集群方案不好做,处理超级节点乏力,没有分片存储机制,国内社区不活跃。
应用场景:社交网络,推荐系统等。专注于构建关系图谱。
NoSQL 代表:Neo4j、Infinite Graph...
无法复制加载中的内容
3.缺点
但是由于Nosql约束少,所以也不能够像sql那样提供where字段属性的查询。因此适合存储较为简单的数据。有一些不能够持久化数据,所以需要和关系型数据库结合。