日志与MVCC

150 阅读15分钟

1.binlog

  1. 概述

binlog是由Server层进行记录,用于记录数据库执行的变更写入性操作(不包括查询)信息,以二进制的形式保存在磁盘中。binlog是mysql的逻辑日志,使用任何存储引擎的mysql数据库都会记录binlog日志。

  • 逻辑日志:可以简单理解为记录的就是sql语句 。
  • 物理日志:mysql 数据最终是保存在数据页中的,物理日志记录的就是数据页变更 。

binlog 是通过追加的方式进行写入的,可以通过max_binlog_size 参数设置每个 binlog文件的大小,当文件大小达到给定值之后,会生成新的文件来保存日志。

  1. binlog使用场景

主要使用场景有 主从复制 和 数据恢复 。

  1. 主从复制 :在 Master 端开启 binlog ,然后将 binlog发送到各个 Slave 端, Slave 端重放 binlog 从而达到主从数据一致。
  2. 数据恢复 :通过使用 mysqlbinlog 工具来恢复数据。
  3. binlog刷盘时机

对于 InnoDB 存储引擎而言,只有在事务提交时才会记录biglog ,此时记录还在内存中

mysql 通过 sync_binlog 参数控制 biglog 的刷盘时机,取值范围是 0-N:

  • 0:不去强制要求,由系统自行判断何时写入磁盘;
  • 1:每次 commit 的时候都要将 binlog 写入磁盘;
  • N:每N个事务,才会将 binlog 写入磁盘。

sync_binlog 最安全的是设置是 1 ,这也是MySQL 5.7.7之后版本的默认值。

  1. binlog日志格式

binlog 日志有三种格式,分别为 STATMENT 、 ROW 和 MIXED。

在 MySQL 5.7.7 之前,默认的格式是 STATEMENT , MySQL 5.7.7 之后,默认值是 ROW。日志格式通过 binlog-format 指定。

  • STATMENT基于SQL 语句的复制( statement-based replication, SBR ),每一条会修改数据的sql语句会记录到binlog 中 。
    • 优点:不需要记录每一行的变化,减少了 binlog 日志量,节约了 IO , 从而提高了性能;
  • 缺点:在某些情况下会导致主从数据不一致,比如执行sysdate() 、 slepp() 等 。
  • ROW:基于行的复制(row-based replication, RBR ),不记录每条sql语句的上下文信息,仅需记录哪条数据被修改了 。
    • 优点:不会出现某些特定情况下的存储过程、或function、或trigger的调用和触发无法被正确复制的问题 ;
  • 缺点:会产生大量的日志,尤其是alter table 的时候会让日志暴涨
  • MIXED:基于STATMENT 和 ROW 两种模式的混合复制(mixed-based replication, MBR ),一般的复制使用STATEMENT 模式保存 binlog ,对于 STATEMENT 模式无法复制的操作使用 ROW 模式保存 binlog

2.redo log

1.概述

mysql是如何保证持久性的呢?

最简单的做法是在每次事务提交的时候,将该事务涉及修改的数据页全部刷新到磁盘中。但是这么做会有严重的性能问题,主要体现在两个方面:

  1. 因为 Innodb 是以 页 为单位进行磁盘交互的,而一个事务很可能只修改一个数据页里面的几个字节,这个时候将完整的数据页刷到磁盘的话,太浪费资源了!
  2. 一个事务可能涉及修改多个数据页,并且这些数据页在物理上并不连续,使用随机IO写入性能太差!

因此 mysql 设计了 redo log , 具体来说就是只记录事务对数据页做了哪些修改而不是某一行或某几行修改成怎样怎样, 这样就能完美地解决性能问题了(相对而言文件更小并且是顺序IO)。

redo log 包括两部分:内存中的日志缓冲( redo log buffer ),磁盘上的日志文件( redo logfile)。

mysql 每执行一条 DML 语句,先将记录写入 redo log buffer,后续某个时间点再一次 性将多个操作记录写到 redo log file。这种 先写日志,再写磁盘 的技术就是 MySQL里经常说到的 WAL(Write-Ahead Logging) 技术。

在计算机操作系统中,用户空间( user space )下的缓冲区数据一般情况下是无法直接写入磁盘的,中间必须经过操作系统内核空间( kernel space )缓冲区( OS Buffer )。

因此, redo log buffer 写入 redo logfile 实际上是先写入 OS Buffer ,然后再通过系统调用 fsync() 将其刷到 redo log file中,过程如下:

mysql支持三种将 redo log buffer 写入 redo log file的时机,可以通过 innodb_flush_log_at_trx_commit参数配置,各参数值含义如下:

2.记录形式

redo log采用了大小固定,循环写入的方式,当写到结尾时,会回到开头循环写日志。如下图:

write pos 到 check point 之间的部分是 redo log 空着的部分,用于记录新的记录;check point 到 write pos 之间是 redo log 待落盘的数据页更改记录。 当 write pos追上check point 时,会先推动 check point 向前移动,空出位置再记录新的日志。

启动 innodb 的时候,不管上次是正常关闭还是异常关闭,总是会进行恢复操作。因为 redo log记录的是数据页的物理变化,因此恢复的时候速度比逻辑日志(如 binlog )要快很多。

重启innodb 时,首先会检查磁盘中数据页的 LSN ,如果数据页的LSN 小于日志中的 LSN ,则会从 checkpoint 开始恢复。还有一种情况,在宕机前正处于checkpoint 的刷盘过程,且数据页的刷盘进度超过了日志页的刷盘进度,此时会出现数据页中记录的 LSN 大于日志中的 LSN,这时超出日志进度的部分将不会重做,因为这本身就表示已经做过的事情,无需再重做。

  1. redo log与binlog区别

由 binlog 和 redo log 的区别可知:binlog 日志只用于归档,只依靠 binlog 是没有 crash-safe 能力的。

但只有 redo log 也不行,因为 redo log 是 InnoDB特有的,且日志上的记录落盘后会被覆盖掉。因此需要 binlog和 redo log二者同时记录,才能保证当数据库发生宕机重启时,数据不会丢失。

4.两阶段提交解决数据一致性的问题

崩溃恢复规则

redo log 和 binlog 有一个共同的数据字段,叫 XID。崩溃恢复的时候,会按顺序扫描 redo log:

  1. 如果碰到既有 prepare、又有 commit 的 redo log,就直接提交;
  2. 如果碰到只有 parepare、而没有 commit 的 redo log,就拿着 XID 去 binlog 找对应的事务。

binlog无记录,回滚事务

binlog有记录,提交事务。

如果同一阶段提交,redo log写完提交,写bin log时mysql进程崩溃,但由于bin log日志没有修改记录,使用redo log+bin log恢复的数据就是数据库旧的数据

如果先写bin log后写redo log,在bin log写完提交之后崩溃,那么在重启恢复的时候,通过binlog恢复了数据没问题。但是由于redo log没有写入,这个事务应该无效,也就是原库中就不应该有这条语句对应的更新。但是通过binlog恢复数据后,数据库中就多了这条更新

由此得出,如果不使用“两阶段提交”,那么数据库的状态就有可能和用它的日志恢复出来的库的状态不一致。

3.undo log

1.概述

原子性 底层是通过 undo log 实现的。undo log主要记录了数据的逻辑变化,比如一条 INSERT 语句,对应一条DELETE 的 undo log ,对于每个 UPDATE 语句,对应一条相反的 UPDATE 的 undo log ,这样在发生错误时,就能回滚到事务之前的数据状态。同时, undo log 也是 MVCC(多版本并发控制)实现的关键。

2.生命周期

  1. 事务开始之前,将当前事务版本生成 undo log,undo log 也会产生 redo log 来保证 undo log 的可靠性。
  2. 事务提交之后,undo log 并不能立马被删除,而是放入待清理的链表。
  3. purge 线程判断是否有其它事务在使用 undo 段中表的上一个事务之前的版本信息,从而决定是否可以清理 undo log 的日志空间。

4.mvcc

  1. 为什么要mvcc

数据库是通过加锁,来实现事务的隔离性的。加锁确实好使,可以保证隔离性。比如串行化隔离级别就是加锁实现的。但是频繁的加锁,导致读数据时,没办法修改,修改数据时,没办法读取,大大降低了数据库性能

如何解决加锁后的性能问题的?

答案就是,MVCC多版本并发控制!它实现读取数据不用加锁,可以让读取数据同时修改。修改数据时同时可读取。

  1. 什么是mvcc

MVCC(Multi Version Concurrency Control),即多版本并发控制。通过维护数据的历史版本,解决并发访问下的数据不一致性。

通俗的讲,数据库中同时存在多个版本的数据,并不是整个数据库的多个版本,而是某一条记录的多个版本同时存在,在某个事务对其进行操作的时候,需要查看这一条记录的隐藏列事务版本id,比对事务id并根据事物隔离级别去判断读取哪个版本的数据。

  1. 相关概念

  1. 事务版本号

事务每次开启前,都会从数据库获得一个自增长的事务ID,可以从事务ID判断事务的执行先后顺序。这就是事务版本号。

  1. 隐式字段

对于InnoDB存储引擎,每一行记录都有两个隐藏列trx_idroll_pointer,如果表中没有主键和非NULL唯一键时,则还会有第三个隐藏的主键列row_id

无法复制加载中的内容

  1. 版本链

多个事务并行操作某一行数据时,不同事务对该行数据的修改会产生多个版本,然后通过回滚指针(roll_pointer),连成一个链表,这个链表就称为版本链。如下:

  1. 快照读: 读取的是记录数据的可见版本(有旧的版本)。不加锁,普通的select语句都是快照读,如:

当前读:读取的是记录数据的最新版本,显式加锁的都是当前读

4.Read View

  • Read View是什么呢? 它就是事务执行SQL语句时,产生的读视图。实际上在innodb中,每个SQL语句执行前都会得到一个Read View。
  • Read View有什么用呢? 它主要是用来做可见性判断的,即判断当前事务可见哪个版本的数据~

Read view 的几个重要属性

  • m_ids:当前系统中那些活跃(未提交)的读写事务ID, 它数据结构为一个List。
  • min_limit_id:表示在生成ReadView时,当前系统中活跃的读写事务中最小的事务id,即m_ids中的最小值。
  • max_limit_id:表示生成ReadView时,系统中应该分配给下一个事务的id值。
  • creator_trx_id: 创建当前read view的事务ID

Read view 匹配条件规则如下:

  1. 如果数据事务ID trx_id < min_limit_id,表明生成该版本的事务在生成Read View前,已经提交(因为事务ID是递增的),所以该版本可以被当前事务访问。
  2. 如果trx_id>= max_limit_id,表明生成该版本的事务在生成ReadView后才生成,所以该版本不可以被当前事务访问。
  3. 如果 min_limit_id =<trx_id< max_limit_id,需要分3种情况讨论
  • (1)如果m_ids包含trx_id,则代表Read View生成时刻,这个事务还未提交,但是如果数据的trx_id等于creator_trx_id的话,表明数据是自己生成的,因此是可见的。
  • (2)如果m_ids包含trx_id,并且trx_id不等于creator_trx_id,则Read View生成时,事务未提交,并且不是自己生产的,所以当前事务也是看不见的;
  • (3).如果m_ids不包含trx_id,则说明你这个事务在Read View生成之前就已经提交了,修改的结果,当前事务是能看见的。

5. 基于MVCC查询一条记录的流程

  1. 获取事务自己的版本号,即事务ID
  2. 获取Read View
  3. 查询得到的数据,然后Read View中的事务版本号进行比较。
  4. 如果不符合Read View的可见性规则, 即就需要Undo log中历史快照;
  5. 最后返回符合规则的数据

InnoDB 实现MVCC,是通过 Read View+ Undo Log 实现的,Undo Log 保存了历史快照,Read View可见性规则帮助判断当前版本的数据是否可见。

在读已提交隔离级别下,每个事务每次查询都生成当前的Read View。在可重复读级别下,只会生成一次Read View。

5.锁-当前读的问题

根据锁的作用范围分类,可以将锁分为表级锁和行级锁。表级锁作用于数据库表上,粒度较大;行级锁作用于数据行上,粒度较小。

  1. 共享锁(S锁):用于不更改或不更新数据的操作,如SELECT语句。共享锁可以在同一时刻被多个事务持有。获得共享锁的事务只能读取数据,不能更改数据。我们可以通过SELECT ... LOCK IN SHARE MODE手工加共享锁。需要注意的是如果一个事务对数据加上了共享锁,其他事务只能对这部分数据再加共享锁,不能加排它锁。
  1. 排他锁(X锁):用于修改数据操作,如INSERT、UPDATE、DELETE。确保事务不会同时对同一部分数据进行多重修改,在同一时刻只能被一个事务持有。排他锁的加锁方式有两种,第一种是自动加锁,在对数据进行增删改时都会默认加上一个排他锁。另一种是手工加锁,使用SELECT ... FOR UPDATE可以实现手工加排他锁。
  1. 如何判断是否加锁-意向锁

可以认为是S锁和X锁在数据表上的标识,通过意向锁可以快速判断表中是否有记录被上锁,从而避免通过遍历的方式来查看表中有没有记录被上锁,提升加锁效率。

意向锁是由数据库自己维护的。当我们给一行数据加上共享锁之前,数据库会自动先申请表的意向共享锁(IS锁);当我们给一行数据加上排他锁之前,数据库会自动先申请表的意向排他锁(IX锁)。例如,我们要加表级别的X锁,首先判断表上是否有被其他事务加了表锁,如果没有,再检查是否有意向锁,此时直接根据意向锁就能知道这张表是否有行级别的X锁或者S锁,这时候数据表里面如果存在行级别的X锁或者S锁的,加锁就会失败。

  1. 自增锁(AUTO-INC锁)

如果我们给某列字段加了AUTO_INCREMENT自增属性,插入的时候不需要为该字段指定值,系统会自动保证递增。

传统模式:锁表,无法并发

连续模式

连续模式(Consecutive)是 MySQL 8.0 之前默认的模式,之所以提出这种模式,是因为传统模式存在影响性能的弊端,所以才有了连续模式。

在锁模式处于连续模式下时,如果 INSERT 语句能够提前确定插入的数据量,则可以不用获取自增锁,举个例子,像 INSERT INTO 这种简单的、能提前确认数量的新增语句,就不会使用自增锁,这个很好理解,在自增值上,我可以直接把这个 INSERT 语句所需要的空间留出来,就可以继续执行下一个语句了。

但是如果 INSERT 语句不能提前确认数据量,则还是会去获取自增锁。例如像 INSERT INTO ... SELECT ... 这种语句,INSERT 的值来源于另一个 SELECT 语句。

交叉模式

所有的 INSERT 语句,包含 INSERT 和 INSERT INTO ... SELECT ,都不会使用 AUTO-INC 自增锁,而是使用较为轻量的 mutex 锁。这样一来,多条 INSERT 语句可以并发的执行,这也是三种锁模式中扩展性最好的一种。

并发执行所带来的副作用就是单个 INSERT 的自增值并不连续,因为 AUTO_INCREMENT 的值分配会在多个 INSERT 语句中来回交叉的执行。

缺点是在并发的情况下无法保证数据一致性,如bin log 基于Statement模式下的主从复制。

  1. 行级锁

InnoDB的行锁是通过锁住索引来实现的,如果加锁查询时没有使用索引,会将整个表的聚簇索引锁住,相当于锁住整个表。根据锁定范围不同,行锁可分为:

  1. 记录锁(Record Lock):单个行记录上的锁。
  2. 间隙锁(Gap Lock):锁定一个范围,但不包括记录本身。
  3. 临键锁(Next-Key Lock):是记录锁和间隙锁的结合。锁定一个范围,包括记录本身。是MySQL的默认行锁。

间隙锁和临键锁都是用来解决幻读的。

什么时候会产生锁:RR, InnoDB

  1. 在使用主键索引id进行精准查询(具体到那个ID),只锁定该行记录,MySQL加的是记录锁,不会产生间隙锁。

注:唯一索引在此场景下作用效果与主键索引相同。

  1. 在使用普通索引指定num的值精准查询时,MySQL在行上加记录锁,在该行相邻区间加间隙锁,而记录锁与间隙锁的组合组成了临键锁,即使用了临键锁。
  2. 根据主键索引锁定一个区间时,MySQL会在该区间添加间隙锁,在区间边界处添加记录锁

注:唯一索引在此场景下作用效果与主键索引相同。

  1. 当锁定不存在的数据时,会在该数据所在区间产生间隙锁
  2. 对于无索引列,添加表锁

总结

对主键索引或唯一索引来说,当锁定一条记录时,会产生记录锁;当锁定一个区间时,会产生间隙锁和记录锁,即临键锁。

对普通索引来说,会产生临键锁。

对无索引列来说,会锁住整张数据表。