vue3 diff算法

195 阅读8分钟

前言:尤玉溪在直播中说vue3.0重新虚拟dom,优化diff算法性能提升等等。以前对vue2的diff算法进行了总结,最近学习了vue3的diff算法,来重新总结一波。

最长递增子序列

vue3diff算法是基于最长递增子序列实现的,我们先来学习一下其原理与实现。

最长递增子序列(Longest Increasing Subsequence,简写 LIS)是非常经典的一个算法问题,比较容易想到的是动态规划解法,时间复杂度 O(N^2),我们借这个问题来由浅入深讲解如何找状态转移方程,如何写出动态规划解法。比较难想到的是利用二分查找,时间复杂度是 O(NlogN),我们通过一种简单的纸牌游戏来辅助理解这种巧妙的解法。

先看一下题目,很容易理解:

image.png

注意「子序列」和「子串」这两个名词的区别,子串一定是连续的,而子序列不一定是连续的。下面先来设计动态规划算法解决这个问题。

一、动态规划解法

动态规划的核心设计思想是数学归纳法。

相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k<n 时成立,然后根据这个假设,想办法推导证明出 k=n 的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k 等于任何数都成立。

类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 dp[0...i-1] 都已经被算出来了,然后问自己:怎么通过这些结果算出 dp[i]

直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i] 的值到底代表着什么?

我们的定义是这样的:dp[i] 表示以 nums[i] 这个数结尾的最长递增子序列的长度。

PS:为什么这样定义呢?这是解决子序列问题的一个套路,后文动态规划之子序列问题解题模板 总结了几种常见套路。你读完本章所有的动态规划问题,就会发现 dp 数组的定义方法也就那几种。

根据这个定义,我们就可以推出 base case:dp[i] 初始值为 1,因为以 nums[i] 结尾的最长递增子序列起码要包含它自己。

举两个例子:

image.png

image.png 算法演进的过程是这样的:

image.png

根据这个定义,我们的最终结果(子序列的最大长度)应该是 dp 数组中的最大值。

int res = 0;
for (int i = 0; i < dp.size(); i++) {
    res = Math.max(res, dp[i]);
}
return res;

读者也许会问,刚才的算法演进过程中每个 dp[i] 的结果是我们肉眼看出来的,我们应该怎么设计算法逻辑来正确计算每个 dp[i] 呢?

这就是动态规划的重头戏了,要思考如何设计算法逻辑进行状态转移,才能正确运行呢?这里就可以使用数学归纳的思想:

假设我们已经知道了 dp[0..4] 的所有结果,我们如何通过这些已知结果推出 dp[5] 呢

根据刚才我们对 dp 数组的定义,现在想求 dp[5] 的值,也就是想求以 nums[5] 为结尾的最长递增子序列。

nums[5] = 3,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到最后,就可以形成一个新的递增子序列,而且这个新的子序列长度加一

显然,可能形成很多种新的子序列,但是我们只选择最长的那一个,把最长子序列的长度作为 dp[5] 的值即可。

for (int j = 0; j < i; j++) {
    if (nums[i] > nums[j]) 
        dp[i] = Math.max(dp[i], dp[j] + 1);
}

当 i = 5 时,这段代码的逻辑就可以算出 dp[5]。其实到这里,这道算法题我们就基本做完了。

读者也许会问,我们刚才只是算了 dp[5] 呀,dp[4]dp[3] 这些怎么算呢?类似数学归纳法,你已经可以算出 dp[5] 了,其他的就都可以算出来:

for (int i = 0; i < nums.length; i++) {
    for (int j = 0; j < i; j++) {
        if (nums[i] > nums[j]) 
            dp[i] = Math.max(dp[i], dp[j] + 1);
    }
}

结合我们刚才说的 base case,下面我们看一下完整代码:

public int lengthOfLIS(int[] nums) {
    int[] dp = new int[nums.length];
    // base case:dp 数组全都初始化为 1
    Arrays.fill(dp, 1);
    for (int i = 0; i < nums.length; i++) {
        for (int j = 0; j < i; j++) {
            if (nums[i] > nums[j]) 
                dp[i] = Math.max(dp[i], dp[j] + 1);
        }
    }
    
    int res = 0;
    for (int i = 0; i < dp.length; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}

至此,这道题就解决了,时间复杂度 O(N^2)。总结一下如何找到动态规划的状态转移关系:

1、明确 dp 数组所存数据的含义。这一步对于任何动态规划问题都很重要,如果不得当或者不够清晰,会阻碍之后的步骤。

2、根据 dp 数组的定义,运用数学归纳法的思想,假设 dp[0...i-1] 都已知,想办法求出 dp[i],一旦这一步完成,整个题目基本就解决了。

但如果无法完成这一步,很可能就是 dp 数组的定义不够恰当,需要重新定义 dp 数组的含义;或者可能是 dp 数组存储的信息还不够,不足以推出下一步的答案,需要把 dp 数组扩大成二维数组甚至三维数组。

一 什么事diff算法?什么时候用到了diff算法?

1.1diff算法的作用域

patch概念引入

patch,英文名称是修补的意思,顾名思义,patch是对vnode进行修补

在vue update过程中在遍历子代vnode的过程中,会用不同的patch方法来patch新老vnode,如果找到对应的 newVnode 和 oldVnode,就可以复用利用里面的真实dom节点。避免了重复创建元素带来的性能开销。毕竟浏览器创造真实的dom,操纵真实的dom,性能代价是昂贵的。

patch过程中,如果面对当前vnode存在有很多chidren的情况,那么需要分别遍历patch新的children Vnode和老的 children vnode。

1.3 diff算法作用?

diff作用就是在patch子vnode过程中,找到与新vnode对应的老vnode,复用真实的dom节点,避免不必要的性能开销

二 diff算法具体做了什么(重点)?

在正式讲diff算法之前,在patchChildren的过程中,存在 patchKeyedChildren

patchUnkeyedChildren

patchKeyedChildren 是正式的开启diff的流程,那么patchUnkeyedChildren的作用是什么呢? 我们来看看针对没有key的情况patchUnkeyedChildren会做什么。

 c1 = c1 || EMPTY_ARR
    c2 = c2 || EMPTY_ARR
    const oldLength = c1.length
    const newLength = c2.length
    const commonLength = Math.min(oldLength, newLength)
    let i
    for (i = 0; i < commonLength; i++) { /* 依次遍历新老vnode进行patch */
      const nextChild = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
      patch(
        c1[i],
        nextChild,
        container,
        null,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized
      )
    }
    if (oldLength > newLength) { /* 老vnode 数量大于新的vnode,删除多余的节点 */
      unmountChildren(c1, parentComponent, parentSuspense, true, commonLength)
    } else { /* /* 老vnode 数量小于于新的vnode,创造新的即诶安 */
      mountChildren(
        c2,
        container,
        anchor,
        parentComponent,
        parentSuspense,
        isSVG,
        optimized,
        commonLength
      )
    }

我们可以得到结论,对于不存在key情况

① 比较新老children的length获取最小值 然后对于公共部分,进行从新patch工作。

② 如果老节点数量大于新的节点数量 ,移除多出来的节点。

③ 如果新的节点数量大于老节点的数量,从新 mountChildren新增的节点。

那么对于存在key情况呢? 会用到diff算法 , diff算法做了什么呢?

patchKeyedChildren方法究竟做了什么?

我们先来看看一些声明的变量。

    /*  c1 老的vnode c2 新的vnode  */
    let i = 0              /* 记录索引 */
    const l2 = c2.length   /* 新vnode的数量 */
    let e1 = c1.length - 1 /* 老vnode 最后一个节点的索引 */
    let e2 = l2 - 1        /* 新节点最后一个节点的索引 */

①第一步从头开始向尾寻找

(a b) c

(a b) d e

 /* 从头对比找到有相同的节点 patch ,发现不同,立即跳出*/
    while (i <= e1 && i <= e2) {
      const n1 = c1[i]
      const n2 = (c2[i] = optimized
        ? cloneIfMounted(c2[i] as VNode)
        : normalizeVNode(c2[i]))
        /* 判断key ,type是否相等 */
      if (isSameVNodeType(n1, n2)) {
        patch(
          n1,
          n2,
          container, 
          parentAnchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
      } else {
        break
      }
      i++
    }

第一步的事情就是从头开始寻找相同的vnode,然后进行patch,如果发现不是相同的节点,那么立即跳出循环。

isSameVNodeType

export function isSameVNodeType(n1: VNode, n2: VNode): boolean {
  return n1.type === n2.type && n1.key === n2.key
}

isSameVNodeType 作用就是判断当前vnode类型 和 vnode的 key是否相等

②第二步从尾开始同前diff

a (b c)

d e (b c)

 /* 如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环 */
    while (i <= e1 && i <= e2) {
      const n1 = c1[e1]
      const n2 = (c2[e2] = optimized
        ? cloneIfMounted(c2[e2] as VNode)
        : normalizeVNode(c2[e2]))
      if (isSameVNodeType(n1, n2)) {
        patch(
          n1,
          n2,
          container,
          parentAnchor,
          parentComponent,
          parentSuspense,
          isSVG,
          optimized
        )
      } else {
        break
      }
      e1--
      e2--
    }

经历第一步操作之后,如果发现没有patch完,那么立即进行第二部,从尾部开始遍历依次向前diff。

如果发现不是相同的节点,那么立即跳出循环。

③④主要针对新增和删除元素的情况,前提是元素没有发生移动, 如果有元素发生移动就要走⑤逻辑

③ 如果老节点是否全部patch,新节点没有被patch完,创建新的vnode

(a b)

(a b) c

i = 2, e1 = 1, e2 = 2

(a b)

c (a b)

i = 0, e1 = -1, e2 = 0

/* 如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode  ) */
    if (i > e1) {
      if (i <= e2) {
        const nextPos = e2 + 1
        const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
        while (i <= e2) {
          patch( /* 创建新的节点*/
            null,
            (c2[i] = optimized
              ? cloneIfMounted(c2[i] as VNode)
              : normalizeVNode(c2[i])),
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG
          )
          i++
        }
      }
    }

i > e1

如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode ),也就是要全部create新的vnode.

④ 如果新节点全部被patch,老节点有剩余,那么卸载所有老节点

i > e2

(a b) c

(a b)

i = 2, e1 = 2, e2 = 1

a (b c)

(b c)

i = 0, e1 = 0, e2 = -1

else if (i > e2) {
   while (i <= e1) {
      unmount(c1[i], parentComponent, parentSuspense, true)
      i++
   }
}

对于老的节点大于新的节点的情况 ,对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )

⑤ 不确定的元素 ( 这种情况说明没有patch完相同的vnode ),我们可以接着①②的逻辑继续往下看

diff核心

      const s1 = i  //第一步遍历到的index
      const s2 = i 
      const keyToNewIndexMap: Map<string | number, number> = new Map()
      /* 把没有比较过的新的vnode节点,通过map保存 */
      for (i = s2; i <= e2; i++) {
        if (nextChild.key != null) {
          keyToNewIndexMap.set(nextChild.key, i)
        }
      }
      let j
      let patched = 0 
      const toBePatched = e2 - s2 + 1 /* 没有经过 path 新的节点的数量 */
      let moved = false /* 证明是否 */
      let maxNewIndexSoFar = 0 
      const newIndexToOldIndexMap = new Array(toBePatched)
       for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
      /* 建立一个数组,每个子元素都是0 [ 0, 0, 0, 0, 0, 0, ] */ 

遍历所有新节点把索引和对应的key,存入map keyToNewIndexMap中

keyToNewIndexMap 存放 key -> index 的map

D : 2

E : 3

C : 4

I : 5

接下来声明一个新的指针 j 记录剩下新的节点的索引。

patched ,记录在第⑤步patched新节点过的数量

toBePatched 记录⑤步之前,没有经过patched 新的节点的数量。

moved 代表是否发生过移动,咱们的demo是已经发生过移动的。

newIndexToOldIndexMap 用来存放新节点索引和老节点索引的数组。

newIndexToOldIndexMap 数组的index是新vnode的索引 , value是老vnode的索引。

接下来

 for (i = s1; i <= e1; i++) { /* 开始遍历老节点 */
        const prevChild = c1[i]
        if (patched >= toBePatched) { /* 已经patch数量大于等于, */
          /* ① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点 */
          unmount(prevChild, parentComponent, parentSuspense, true)
          continue
        }
        let newIndex
         /* ② 如果,老节点的key存在 ,通过key找到对应的index */
        if (prevChild.key != null) {
          newIndex = keyToNewIndexMap.get(prevChild.key)
        } else { /*  ③ 如果,老节点的key不存在 */
          for (j = s2; j <= e2; j++) { /* 遍历剩下的所有新节点 */
            if (
              newIndexToOldIndexMap[j - s2] === 0 && /* newIndexToOldIndexMap[j - s2] === 0 新节点没有被patch */
              isSameVNodeType(prevChild, c2[j] as VNode)
            ) { /* 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex  */
              newIndex = j
              break
            }
          }
        }
        if (newIndex === undefined) { /* ①没有找到与老节点对应的新节点,删除当前节点,卸载所有的节点 */
          unmount(prevChild, parentComponent, parentSuspense, true)
        } else {
          /* ②把老节点的索引,记录在存放新节点的数组中, */
          newIndexToOldIndexMap[newIndex - s2] = i + 1
          if (newIndex >= maxNewIndexSoFar) {
            maxNewIndexSoFar = newIndex
          } else {
            /* 证明有节点已经移动了   */
            moved = true
          }
          /* 找到新的节点进行patch节点 */
          patch(
            prevChild,
            c2[newIndex] as VNode,
            container,
            null,
            parentComponent,
            parentSuspense,
            isSVG,
            optimized
          )
          patched++
        }
 }

这段代码算是diff算法的核心。

\

第一步: 通过老节点的key找到对应新节点的index:开始遍历老的节点,判断有没有key, 如果存在key通过新节点的keyToNewIndexMap找到与新节点index,如果不存在key那么会遍历剩下来的新节点试图找到对应index。

第二步:如果存在index证明有对应的老节点,那么直接复用老节点进行patch,没有找到与老节点对应的新节点,删除当前老节点。

第三步:newIndexToOldIndexMap找到对应新老节点关系。

到这里,我们patch了一遍,把所有的老vnode都patch了一遍。

但是接下来的问题。

1 虽然已经patch过所有的老节点。可以对于已经发生移动的节点,要怎么真正移动dom元素。

2 对于新增的节点,(图中节点I)并没有处理,应该怎么处理。

      /*移动老节点创建新节点*/
     /* 根据最长稳定序列移动相对应的节点 */
      const increasingNewIndexSequence = moved
        ? getSequence(newIndexToOldIndexMap)
        : EMPTY_ARR
      j = increasingNewIndexSequence.length - 1
      for (i = toBePatched - 1; i >= 0; i--) {
        const nextIndex = s2 + i
        const nextChild = c2[nextIndex] as VNode
        const anchor =
          nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
        if (newIndexToOldIndexMap[i] === 0) { /* 没有老的节点与新的节点对应,则创建一个新的vnode */
          patch(
            null,
            nextChild,
            container,
            anchor,
            parentComponent,
            parentSuspense,
            isSVG
          )
        } else if (moved) {
          if (j < 0 || i !== increasingNewIndexSequence[j]) { /*如果没有在长*/
            /* 需要移动的vnode */
            move(nextChild, container, anchor, MoveType.REORDER)
          } else {
            j--
          }    

⑥最长稳定序列

首选通过getSequence得到一个最长稳定序列,对于index === 0 的情况也就是新增节点(图中I)需要从新mount一个新的vnode,然后对于发生移动的节点进行统一的移动操作

什么叫做最长稳定序列

对于以下的原始序列

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

最长递增子序列为

0, 2, 6, 9, 11, 15.

为什么要得到最长稳定序列

因为我们需要一个序列作为基础的参照序列,其他未在稳定序列的节点,进行移动。

总结

经过上述我们大致知道了diff算法的流程

1 从头对比找到有相同的节点 patch ,发现不同,立即跳出。

2如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环。

3如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode )。

4 对于老的节点大于新的节点的情况 , 对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )。

5不确定的元素( 这种情况说明没有patch完相同的vnode ) 与 3 ,4对立关系。

1 把没有比较过的新的vnode节点,通过map保存

记录已经patch的新节点的数量 patched

没有经过 path 新的节点的数量 toBePatched

建立一个数组newIndexToOldIndexMap,每个子元素都是[ 0, 0, 0, 0, 0, 0, ] 里面的数字记录老节点的索引 ,数组索引就是新节点的索引

开始遍历老节点

① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点

② 如果,老节点的key存在 ,通过key找到对应的index

③ 如果,老节点的key不存在

1 遍历剩下的所有新节点

2 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex

④ 没有找到与老节点对应的新节点,卸载当前老节点。

⑤ 如果找到与老节点对应的新节点,把老节点的索引,记录在存放新节点的数组中,

1 如果节点发生移动 记录已经移动了

2 patch新老节点 找到新的节点进行patch节点

遍历结束

如果发生移动

① 根据 newIndexToOldIndexMap 新老节点索引列表找到最长稳定序列

② 对于 newIndexToOldIndexMap -item =0 证明不存在老节点 ,从新形成新的vnode

③ 对于发生移动的节点进行移动处理。

参考文献

1、github.com/labuladong/… 2、zhuanlan.zhihu.com/p/150103393