前言:尤玉溪在直播中说vue3.0重新虚拟dom,优化diff算法性能提升等等。以前对vue2的diff算法进行了总结,最近学习了vue3的diff算法,来重新总结一波。
最长递增子序列
vue3diff算法是基于最长递增子序列实现的,我们先来学习一下其原理与实现。
最长递增子序列(Longest Increasing Subsequence,简写 LIS)是非常经典的一个算法问题,比较容易想到的是动态规划解法,时间复杂度 O(N^2),我们借这个问题来由浅入深讲解如何找状态转移方程,如何写出动态规划解法。比较难想到的是利用二分查找,时间复杂度是 O(NlogN),我们通过一种简单的纸牌游戏来辅助理解这种巧妙的解法。
先看一下题目,很容易理解:
注意「子序列」和「子串」这两个名词的区别,子串一定是连续的,而子序列不一定是连续的。下面先来设计动态规划算法解决这个问题。
一、动态规划解法
动态规划的核心设计思想是数学归纳法。
相信大家对数学归纳法都不陌生,高中就学过,而且思路很简单。比如我们想证明一个数学结论,那么我们先假设这个结论在 k<n
时成立,然后根据这个假设,想办法推导证明出 k=n
的时候此结论也成立。如果能够证明出来,那么就说明这个结论对于 k
等于任何数都成立。
类似的,我们设计动态规划算法,不是需要一个 dp 数组吗?我们可以假设 dp[0...i-1]
都已经被算出来了,然后问自己:怎么通过这些结果算出 dp[i]
?
直接拿最长递增子序列这个问题举例你就明白了。不过,首先要定义清楚 dp 数组的含义,即 dp[i]
的值到底代表着什么?
我们的定义是这样的:dp[i]
表示以 nums[i]
这个数结尾的最长递增子序列的长度。
PS:为什么这样定义呢?这是解决子序列问题的一个套路,后文动态规划之子序列问题解题模板 总结了几种常见套路。你读完本章所有的动态规划问题,就会发现 dp
数组的定义方法也就那几种。
根据这个定义,我们就可以推出 base case:dp[i]
初始值为 1,因为以 nums[i]
结尾的最长递增子序列起码要包含它自己。
举两个例子:
算法演进的过程是这样的:
根据这个定义,我们的最终结果(子序列的最大长度)应该是 dp 数组中的最大值。
int res = 0;
for (int i = 0; i < dp.size(); i++) {
res = Math.max(res, dp[i]);
}
return res;
读者也许会问,刚才的算法演进过程中每个 dp[i]
的结果是我们肉眼看出来的,我们应该怎么设计算法逻辑来正确计算每个 dp[i]
呢?
这就是动态规划的重头戏了,要思考如何设计算法逻辑进行状态转移,才能正确运行呢?这里就可以使用数学归纳的思想:
假设我们已经知道了 dp[0..4]
的所有结果,我们如何通过这些已知结果推出 dp[5]
呢?
根据刚才我们对 dp
数组的定义,现在想求 dp[5]
的值,也就是想求以 nums[5]
为结尾的最长递增子序列。
nums[5] = 3
,既然是递增子序列,我们只要找到前面那些结尾比 3 小的子序列,然后把 3 接到最后,就可以形成一个新的递增子序列,而且这个新的子序列长度加一。
显然,可能形成很多种新的子序列,但是我们只选择最长的那一个,把最长子序列的长度作为 dp[5]
的值即可。
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
dp[i] = Math.max(dp[i], dp[j] + 1);
}
当 i = 5
时,这段代码的逻辑就可以算出 dp[5]
。其实到这里,这道算法题我们就基本做完了。
读者也许会问,我们刚才只是算了 dp[5]
呀,dp[4]
, dp[3]
这些怎么算呢?类似数学归纳法,你已经可以算出 dp[5]
了,其他的就都可以算出来:
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
结合我们刚才说的 base case,下面我们看一下完整代码:
public int lengthOfLIS(int[] nums) {
int[] dp = new int[nums.length];
// base case:dp 数组全都初始化为 1
Arrays.fill(dp, 1);
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
int res = 0;
for (int i = 0; i < dp.length; i++) {
res = Math.max(res, dp[i]);
}
return res;
}
至此,这道题就解决了,时间复杂度 O(N^2)。总结一下如何找到动态规划的状态转移关系:
1、明确 dp
数组所存数据的含义。这一步对于任何动态规划问题都很重要,如果不得当或者不够清晰,会阻碍之后的步骤。
2、根据 dp
数组的定义,运用数学归纳法的思想,假设 dp[0...i-1]
都已知,想办法求出 dp[i]
,一旦这一步完成,整个题目基本就解决了。
但如果无法完成这一步,很可能就是 dp
数组的定义不够恰当,需要重新定义 dp
数组的含义;或者可能是 dp
数组存储的信息还不够,不足以推出下一步的答案,需要把 dp
数组扩大成二维数组甚至三维数组。
一 什么事diff算法?什么时候用到了diff算法?
1.1diff算法的作用域
patch概念引入
patch,英文名称是修补的意思,顾名思义,patch是对vnode进行修补
在vue update过程中在遍历子代vnode的过程中,会用不同的patch方法来patch新老vnode,如果找到对应的 newVnode 和 oldVnode,就可以复用利用里面的真实dom节点。避免了重复创建元素带来的性能开销。毕竟浏览器创造真实的dom,操纵真实的dom,性能代价是昂贵的。
patch过程中,如果面对当前vnode存在有很多chidren的情况,那么需要分别遍历patch新的children Vnode和老的 children vnode。
1.3 diff算法作用?
diff作用就是在patch子vnode过程中,找到与新vnode对应的老vnode,复用真实的dom节点,避免不必要的性能开销
二 diff算法具体做了什么(重点)?
在正式讲diff算法之前,在patchChildren的过程中,存在 patchKeyedChildren
patchUnkeyedChildren
patchKeyedChildren 是正式的开启diff的流程,那么patchUnkeyedChildren的作用是什么呢? 我们来看看针对没有key的情况patchUnkeyedChildren会做什么。
c1 = c1 || EMPTY_ARR
c2 = c2 || EMPTY_ARR
const oldLength = c1.length
const newLength = c2.length
const commonLength = Math.min(oldLength, newLength)
let i
for (i = 0; i < commonLength; i++) { /* 依次遍历新老vnode进行patch */
const nextChild = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
patch(
c1[i],
nextChild,
container,
null,
parentComponent,
parentSuspense,
isSVG,
optimized
)
}
if (oldLength > newLength) { /* 老vnode 数量大于新的vnode,删除多余的节点 */
unmountChildren(c1, parentComponent, parentSuspense, true, commonLength)
} else { /* /* 老vnode 数量小于于新的vnode,创造新的即诶安 */
mountChildren(
c2,
container,
anchor,
parentComponent,
parentSuspense,
isSVG,
optimized,
commonLength
)
}
我们可以得到结论,对于不存在key情况
① 比较新老children的length获取最小值 然后对于公共部分,进行从新patch工作。
② 如果老节点数量大于新的节点数量 ,移除多出来的节点。
③ 如果新的节点数量大于老节点的数量,从新 mountChildren新增的节点。
那么对于存在key情况呢? 会用到diff算法 , diff算法做了什么呢?
patchKeyedChildren方法究竟做了什么?
我们先来看看一些声明的变量。
/* c1 老的vnode c2 新的vnode */
let i = 0 /* 记录索引 */
const l2 = c2.length /* 新vnode的数量 */
let e1 = c1.length - 1 /* 老vnode 最后一个节点的索引 */
let e2 = l2 - 1 /* 新节点最后一个节点的索引 */
①第一步从头开始向尾寻找
(a b) c
(a b) d e
/* 从头对比找到有相同的节点 patch ,发现不同,立即跳出*/
while (i <= e1 && i <= e2) {
const n1 = c1[i]
const n2 = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
/* 判断key ,type是否相等 */
if (isSameVNodeType(n1, n2)) {
patch(
n1,
n2,
container,
parentAnchor,
parentComponent,
parentSuspense,
isSVG,
optimized
)
} else {
break
}
i++
}
第一步的事情就是从头开始寻找相同的vnode,然后进行patch,如果发现不是相同的节点,那么立即跳出循环。
isSameVNodeType
export function isSameVNodeType(n1: VNode, n2: VNode): boolean {
return n1.type === n2.type && n1.key === n2.key
}
isSameVNodeType 作用就是判断当前vnode类型 和 vnode的 key是否相等
②第二步从尾开始同前diff
a (b c)
d e (b c)
/* 如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环 */
while (i <= e1 && i <= e2) {
const n1 = c1[e1]
const n2 = (c2[e2] = optimized
? cloneIfMounted(c2[e2] as VNode)
: normalizeVNode(c2[e2]))
if (isSameVNodeType(n1, n2)) {
patch(
n1,
n2,
container,
parentAnchor,
parentComponent,
parentSuspense,
isSVG,
optimized
)
} else {
break
}
e1--
e2--
}
经历第一步操作之后,如果发现没有patch完,那么立即进行第二部,从尾部开始遍历依次向前diff。
如果发现不是相同的节点,那么立即跳出循环。
③④主要针对新增和删除元素的情况,前提是元素没有发生移动, 如果有元素发生移动就要走⑤逻辑。
③ 如果老节点是否全部patch,新节点没有被patch完,创建新的vnode
(a b)
(a b) c
i = 2, e1 = 1, e2 = 2
(a b)
c (a b)
i = 0, e1 = -1, e2 = 0
/* 如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode ) */
if (i > e1) {
if (i <= e2) {
const nextPos = e2 + 1
const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
while (i <= e2) {
patch( /* 创建新的节点*/
null,
(c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i])),
container,
anchor,
parentComponent,
parentSuspense,
isSVG
)
i++
}
}
}
i > e1
如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode ),也就是要全部create新的vnode.
④ 如果新节点全部被patch,老节点有剩余,那么卸载所有老节点
i > e2
(a b) c
(a b)
i = 2, e1 = 2, e2 = 1
a (b c)
(b c)
i = 0, e1 = 0, e2 = -1
else if (i > e2) {
while (i <= e1) {
unmount(c1[i], parentComponent, parentSuspense, true)
i++
}
}
对于老的节点大于新的节点的情况 ,对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )
⑤ 不确定的元素 ( 这种情况说明没有patch完相同的vnode ),我们可以接着①②的逻辑继续往下看
diff核心
const s1 = i //第一步遍历到的index
const s2 = i
const keyToNewIndexMap: Map<string | number, number> = new Map()
/* 把没有比较过的新的vnode节点,通过map保存 */
for (i = s2; i <= e2; i++) {
if (nextChild.key != null) {
keyToNewIndexMap.set(nextChild.key, i)
}
}
let j
let patched = 0
const toBePatched = e2 - s2 + 1 /* 没有经过 path 新的节点的数量 */
let moved = false /* 证明是否 */
let maxNewIndexSoFar = 0
const newIndexToOldIndexMap = new Array(toBePatched)
for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
/* 建立一个数组,每个子元素都是0 [ 0, 0, 0, 0, 0, 0, ] */
遍历所有新节点把索引和对应的key,存入map keyToNewIndexMap中
keyToNewIndexMap 存放 key -> index 的map
D : 2
E : 3
C : 4
I : 5
接下来声明一个新的指针 j 记录剩下新的节点的索引。
patched ,记录在第⑤步patched新节点过的数量
toBePatched 记录⑤步之前,没有经过patched 新的节点的数量。
moved 代表是否发生过移动,咱们的demo是已经发生过移动的。
newIndexToOldIndexMap 用来存放新节点索引和老节点索引的数组。
newIndexToOldIndexMap 数组的index是新vnode的索引 , value是老vnode的索引。
接下来
for (i = s1; i <= e1; i++) { /* 开始遍历老节点 */
const prevChild = c1[i]
if (patched >= toBePatched) { /* 已经patch数量大于等于, */
/* ① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点 */
unmount(prevChild, parentComponent, parentSuspense, true)
continue
}
let newIndex
/* ② 如果,老节点的key存在 ,通过key找到对应的index */
if (prevChild.key != null) {
newIndex = keyToNewIndexMap.get(prevChild.key)
} else { /* ③ 如果,老节点的key不存在 */
for (j = s2; j <= e2; j++) { /* 遍历剩下的所有新节点 */
if (
newIndexToOldIndexMap[j - s2] === 0 && /* newIndexToOldIndexMap[j - s2] === 0 新节点没有被patch */
isSameVNodeType(prevChild, c2[j] as VNode)
) { /* 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex */
newIndex = j
break
}
}
}
if (newIndex === undefined) { /* ①没有找到与老节点对应的新节点,删除当前节点,卸载所有的节点 */
unmount(prevChild, parentComponent, parentSuspense, true)
} else {
/* ②把老节点的索引,记录在存放新节点的数组中, */
newIndexToOldIndexMap[newIndex - s2] = i + 1
if (newIndex >= maxNewIndexSoFar) {
maxNewIndexSoFar = newIndex
} else {
/* 证明有节点已经移动了 */
moved = true
}
/* 找到新的节点进行patch节点 */
patch(
prevChild,
c2[newIndex] as VNode,
container,
null,
parentComponent,
parentSuspense,
isSVG,
optimized
)
patched++
}
}
这段代码算是diff算法的核心。
\
第一步: 通过老节点的key找到对应新节点的index:开始遍历老的节点,判断有没有key, 如果存在key通过新节点的keyToNewIndexMap找到与新节点index,如果不存在key那么会遍历剩下来的新节点试图找到对应index。
第二步:如果存在index证明有对应的老节点,那么直接复用老节点进行patch,没有找到与老节点对应的新节点,删除当前老节点。
第三步:newIndexToOldIndexMap找到对应新老节点关系。
到这里,我们patch了一遍,把所有的老vnode都patch了一遍。
但是接下来的问题。
1 虽然已经patch过所有的老节点。可以对于已经发生移动的节点,要怎么真正移动dom元素。
2 对于新增的节点,(图中节点I)并没有处理,应该怎么处理。
/*移动老节点创建新节点*/
/* 根据最长稳定序列移动相对应的节点 */
const increasingNewIndexSequence = moved
? getSequence(newIndexToOldIndexMap)
: EMPTY_ARR
j = increasingNewIndexSequence.length - 1
for (i = toBePatched - 1; i >= 0; i--) {
const nextIndex = s2 + i
const nextChild = c2[nextIndex] as VNode
const anchor =
nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
if (newIndexToOldIndexMap[i] === 0) { /* 没有老的节点与新的节点对应,则创建一个新的vnode */
patch(
null,
nextChild,
container,
anchor,
parentComponent,
parentSuspense,
isSVG
)
} else if (moved) {
if (j < 0 || i !== increasingNewIndexSequence[j]) { /*如果没有在长*/
/* 需要移动的vnode */
move(nextChild, container, anchor, MoveType.REORDER)
} else {
j--
}
⑥最长稳定序列
首选通过getSequence得到一个最长稳定序列,对于index === 0 的情况也就是新增节点(图中I)需要从新mount一个新的vnode,然后对于发生移动的节点进行统一的移动操作
什么叫做最长稳定序列
对于以下的原始序列
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15
最长递增子序列为
0, 2, 6, 9, 11, 15.
为什么要得到最长稳定序列
因为我们需要一个序列作为基础的参照序列,其他未在稳定序列的节点,进行移动。
总结
经过上述我们大致知道了diff算法的流程
1 从头对比找到有相同的节点 patch ,发现不同,立即跳出。
2如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环。
3如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode )。
4 对于老的节点大于新的节点的情况 , 对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )。
5不确定的元素( 这种情况说明没有patch完相同的vnode ) 与 3 ,4对立关系。
1 把没有比较过的新的vnode节点,通过map保存
记录已经patch的新节点的数量 patched
没有经过 path 新的节点的数量 toBePatched
建立一个数组newIndexToOldIndexMap,每个子元素都是[ 0, 0, 0, 0, 0, 0, ] 里面的数字记录老节点的索引 ,数组索引就是新节点的索引
开始遍历老节点
① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点
② 如果,老节点的key存在 ,通过key找到对应的index
③ 如果,老节点的key不存在
1 遍历剩下的所有新节点
2 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex
④ 没有找到与老节点对应的新节点,卸载当前老节点。
⑤ 如果找到与老节点对应的新节点,把老节点的索引,记录在存放新节点的数组中,
1 如果节点发生移动 记录已经移动了
2 patch新老节点 找到新的节点进行patch节点
遍历结束
如果发生移动
① 根据 newIndexToOldIndexMap 新老节点索引列表找到最长稳定序列
② 对于 newIndexToOldIndexMap -item =0 证明不存在老节点 ,从新形成新的vnode
③ 对于发生移动的节点进行移动处理。