过期策略
Redis有定期删除和惰性删除两种策略。定期删除是集中处理,惰性删除是零散处理。
定期删除
Redis 会将每个设置了过期时间的 key 放入到一个独立的字典中,以后会定期遍历这个字典来删除到期的 key。
Redis 默认会每秒进行十次过期扫描(100ms一次redis.conf中有一个属性"hz",默认为10),过期扫描不会遍历过期字典中所有的 key,而是采用了一种简单的贪心策略。
- 从过期字典中随机 20 个 key;
- 删除这 20 个 key 中已经过期的 key;
- 如果过期的 key 比率超过 1/4,那就重复步骤 1,直到可能过期的key百分比低于25%。也就是任何给定时刻,使用内存的已过期key的最大数量不超过每秒最大写入操作数量除以 4。
redis默认是每隔 100ms就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。
为什么要随机呢?
假如 redis 存了几十万个 key ,每隔100ms就遍历所有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载。
惰性删除
客户端访问这个key的时候,redis对key的过期时间进行检查,如果过期了就立即删除,不会返回任何东西。
定期删除可能会导致很多过期key到了时间并没有被删除掉。所以就有了惰性删除。
淘汰策略
为什么需要淘汰策略?
定期删除和惰性删除都不是一种完全精准的删除,所以就需要内存淘汰策略进行补充。
8种淘汰策略
- noeviction:当内存使用超过配置的时候会返回错误,不会驱逐任何键
- allkeys-lru:加入键的时候,如果过限,首先通过LRU算法驱逐最久没有使用的键
- volatile-lru:加入键的时候如果过限,首先从设置了过期时间的键集合中驱逐最久没有使用的键
- allkeys-random:加入键的时候如果过限,从所有key随机删除
- volatile-random:加入键的时候如果过限,从过期键的集合中随机驱逐
- volatile-ttl:从配置了过期时间的键中驱逐马上就要过期的键
- volatile-lfu:从所有配置了过期时间的键中驱逐使用频率最少的键
- allkeys-lfu:从所有键中驱逐使用频率最少的键
Redis的LRU算法实现(近似LRU)
Redis维护了一个24位时钟,可以简单理解为当前系统的时间戳,每隔一定时间会更新这个时钟。每个key对象内部同样维护了一个24位的时钟,当新增key对象的时候会把系统的时钟赋值到这个内部对象时钟。比如我现在要进行LRU,那么首先拿到当前的全局时钟,然后再找到内部时钟与全局时钟距离时间最久的(差最大)进行淘汰,这里值得注意的是全局时钟只有24位,按秒为单位来表示才能存储194天,所以可能会出现key的时钟大于全局时钟的情况,如果这种情况出现那么就两个相加而不是相减来求最久的key。
struct redisServer {
pid_t pid;
char *configfile;
//全局时钟
unsigned lruclock:LRU_BITS;
...
};
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
/* key对象内部时钟 */
unsigned lru:LRU_BITS;
int refcount;
void *ptr;
} robj;
Redis中的LRU与常规的LRU实现并不相同,常规LRU会准确的淘汰掉队头的元素,但是Redis的LRU并不维护队列,只是根据配置的策略要么从所有的key中随机选择N个(N可以配置)要么从所有的设置了过期时间的key中选出N个键,然后再从这N个键中选出最久没有使用的一个key进行淘汰。
下图是常规LRU淘汰策略与Redis随机样本取一键淘汰策略的对比,浅灰色表示已经删除的键,深灰色表示没有被删除的键,绿色表示新加入的键,越往上表示键加入的时间越久。从图中可以看出,在redis 3中,设置样本数为10的时候能够很准确的淘汰掉最久没有使用的键,与常规LRU基本持平。
为什么要使用近似LRU?
- 性能问题,由于近似LRU算法只是最多随机采样N个key并对其进行排序,如果精准需要对所有key进行排序,这样近似LRU性能更高
- 内存占用问题,redis对内存要求很高,会尽量降低内存使用率,如果是抽样排序可以有效降低内存的占用
- 实际效果基本相等,如果请求符合长尾法则,那么真实LRU与Redis LRU之间表现基本无差异
- 在近似情况下提供可自配置的取样率来提升精准度,例如通过 CONFIG SET maxmemory-samples 指令可以设置取样数,取样数越高越精准,如果你的CPU和内存有足够,可以提高取样数看命中率来探测最佳的采样比例。
LFU
LFU是在Redis4.0后出现的,LRU的最近最少使用实际上并不精确,考虑下面的情况,如果在|处删除,那么A距离的时间最久,但实际上A的使用频率要比B频繁,所以合理的淘汰策略应该是淘汰B。LFU就是为应对这种情况而生的。
A--A--A--A--A--A--A--A--A--A----|
B-----B-----B-----B------------B|
LFU把原来的key对象的内部时钟的24位分成两部分,前16位还代表时钟,后8位代表一个计数器。16位的情况下如果还按照秒为单位就会导致不够用,所以一般这里以时钟为单位。而后8位表示当前key对象的访问频率,8位只能代表255,但是redis并没有采用线性上升的方式,而是通过一个复杂的公式,通过配置如下两个参数来调整数据的递增速度。
lfu-log-factor 可以调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。
lfu-decay-time 是一个以分钟为单位的数值,可以调整counter的减少速度。
所以这两个因素就对应到了LFU的Counter减少策略和增长策略。