Markedown常用数学公式

137 阅读1分钟

本文已参与「新人创作礼」活动,一起开启掘金创作之路。

Markdown中数学符号

符号代码符号代码
i=0n\sum_{i=0}^n$\sum_{i=0}^n$\circ$\circ$
\leq$\leq$\geq$ \geq $
\prod$\prod$\approx$\approx$
\neq$\neq$\iint$\iint$
\int$\int$\nabla$\nabla$
\oint$\oint$\because$\because$
\infty$\infty$\therefore$\therefore$
\exists$\exists$\forall$\forall$
\emptyset$\emptyset$\bigcup$\bigcup$
\in$\in$\bigcap$\bigcap$
\notin$\notin$\subset$\subset$
\subseteq$\subseteq$\bigvee$\bigvee$
y^\hat{y}$\hat{y}$\Rightarrow$\Rightarrow$
lima\lim_{a\to \infty}\lim_{a\to \infty}dx \mathrm{d} x\mathrm{d} x

常用希腊字母

大写markdown小写markdown
AAα\alpha
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ε\varepsilonψ\psi\psi
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xi\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma

常见数学公式

  • 分段函数
$$
f(x) = \left\{
  \begin{array}{lr}
    x^2 &  x < 0\\
    x^3 &  x \ge 0
  \end{array}
\right.
$$

$$
u(x) = 
  \begin{cases} 
   \exp{x} & \text{if } x \geq 0 \\
   1       & \text{if } x < 0
  \end{cases}
$$
858
f(x)={x2x<0x3x0f(x) = \left\{ \begin{array}{lr} x^2 & x < 0\\ x^3 & x \ge 0 \end{array} \right.
u(x)={expxif x01if x<0u(x) = \begin{cases} \exp{x} & \text{if } x \geq 0 \\ 1 & \text{if } x < 0 \end{cases}
  • 方程组

    $$
    \left\{ 
    \begin{array}{c}
        a_1x+b_1y+c_1z=d_1 \\ 
        a_2x+b_2y+c_2z=d_2 \\ 
        a_3x+b_3y+c_3z=d_3
    \end{array}
    \right. 
    $$
    
    {a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right.
  • 推导过程

    $$
    \begin{aligned}
    \frac{\partial J(\theta)}{\partial\theta_j}
    & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\
    & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\
    & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
    \end{aligned}
    $$
    
    
    J(θ)θj=1mi=0m(yihθ(xi))θj(yihθ(xi))=1mi=0m(yihθ(xi))θj(j=0nθjxjiyi)=1mi=0m(yihθ(xi))xji\begin{aligned} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j \end{aligned}
  • 特殊括号以及上下标

    $$
    \tbinom{n}{k} \\
    \binom{n}{k}  \\
    {n\brack k}\\
     {n\choose k} \\
     {n\brace k}\\
     \overset{x}{y}\\
    $$
    
(nk)(nk)[nk](nk){nk}yx字母加粗 \tbinom{n}{k} \\ \binom{n}{k} \\ {n\brack k}\\ {n\choose k} \\ {n\brace k}\\ \overset{x}{y}\\**字母加粗**
  • 加粗:$\pmb{字母}$ 加粗倾斜:$\boldsymbol{字母}$