ThreadPoolExecutor源码解读

272 阅读6分钟

1.ThreadPoolExecutor方法解析

1.1 submit(Callable task)方法

public <T> Future<T> submit(Callable<T> task) {//submit方法实际在ThreadPoolExecutor的超类AbstractExecutorService中,该超类实现了ExecutorService接口
    if (task == null) throw new NullPointerException();
    RunnableFuture<T> ftask = newTaskFor(task);//实际返回的是一个FutureTask类型,FutureTask实现了RunnableFuture接口
    execute(ftask);//调用ThreadPoolExecutor中的execute()方法
    return ftask;//实际返回类型是一个FutureTask类型
}

1.2 executor(Runnable command)方法

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();//ctl是一个ActomicInteger类型,其高三位维护了线程池的状态,剩余位维护了工作线程的数量
    if (workerCountOf(c) < corePoolSize) {//判断工作线程数量小于线程池设置的核心线程的数量
        if (addWorker(command, true))//新建工作线程,这里第二个参数指示当前线程池最多允许的工作线程数量,如果为true则代表最多允许的工作线程的数量为corePoolSize,如果为false则代表最多允许的工作线程的数量为maxPoolSize;
            return;
        c = ctl.get();//并发情况,线程池的状态及工作线程的数量可能发生改变,重新获取ctl
    }
    if (isRunning(c) && workQueue.offer(command)) {//如果线程池为RUNNING状态,则将提交的任务放入阻塞队列
        int recheck = ctl.get();
        if (! isRunning(recheck) && remove(command))//双重检查,如果任务成功提交到阻塞队列,并且线程池状态已经变为非RUNNING状态,需要将该任务从阻塞队列异常,移除后会手动调用tryTerminate()方法
            reject(command);//调用对应的拒绝策略,默认为AbortPolicy,即抛异常
        else if (workerCountOf(recheck) == 0)//如果当前工作线程数量为0,则新建工作线程
            addWorker(null, false);//第一个参数为null,表示新建时工作线程没有任务,需要到阻塞队列去拿,拿任务的方法为ThreadPoolExecutor的getTask()方法
    }
    else if (!addWorker(command, false))//如果加入阻塞队列失败(可能阻塞队列已满),则直接调用addWorker()方法,因为第二个参数传入的false,因此如果当前线程池的工作线程的数量大于等于maxPoolSize则该方法会失败
        reject(command);//同上
}

1.3 addWorker(Runnable firstTask, boolean core)

private boolean addWorker(Runnable firstTask, boolean core) {//第一个参数为提交的任务,实际为FutureTask类型,第二个指示了参数表示当前线程池最多可创建的工作线程的数量,如果core=true表示最多可创建数量为corePoolSize,如果core=false表示最多可创建的数量为maxPoolSize
 retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;//仅当线程池处于以下两种状态时,可以新建工作线程1)线程池为RUNNABLE状态 2)当前线程池状态为SHUTDOW,且提交的任务已经加入到阻塞队列中(此时firstTask为null代表新建的工作线程需要到阻塞队列中去取任务)

        for (;;) {
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))//如果当前线程池数量大于corePoolSize/maxPoolSize,则返回false
                return false;
            if (compareAndIncrementWorkerCount(c))//调用ctl的compareAndSet方法将工作线程数量加1,若成功则跳出外层for循环,否则一直重试
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)//如果在此期间线程池的运行状态发生改变,则重新从外层for循环执行
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);//work即为工作线程,其保存了执行任务的线程,以及要执行的任务
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();//内部要修改两个成员变量,分别为记录工作线程集合的workers和本线程池最大工作线程的数量largestPoolSize
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) //本人认为,这里如果是用的Executors.DefaultThreadFactory,那么每次新建worker都是新建线程,则一定没有调用start()方法,返回false
                        throw new IllegalThreadStateException();
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;//注意这里要将largestPoolSize与maxPoolSize区分开,largestPoolSize相当于记录当前线程池最多用到了多少个工作线程,其小于等于maxPoolSize
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                t.start();//重要!!,此处的thread实际是创建worker时,通过线程工厂创建的,因此其对应的run()方法,应当未Worker类中的run()方法,而不是直接调用的传入的Runnable的run()方法
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)//如果中间发生异常,则需要将workers即ctl的状态恢复到正确状态
            addWorkerFailed(w);
    }
    return workerStarted;
}

1.4 Worker类的构造方法Worker(Runnable firstTask)

Worker(Runnable firstTask) {
    setState(-1); // inhibit interrupts until runWorker
    this.firstTask = firstTask;
    this.thread = getThreadFactory().newThread(this);//调用线程工厂的newThread()方法,因为此处传入的this实际为本对象(不是firstTask,这里需要注意),因此addWorker()方法中调用worker的thread.start()方法最终调用的run()方法实际是下面的run()方法
}

/** Delegates main run loop to outer runWorker  */
public void run() {
    runWorker(this);//调用runWorker()方法
}

1.5 runWorker(Worker w)方法

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();//wt其实就是this.thread
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;//指示是否是异常结束,如果下面的while方法运行过程中无异常,则会将变量置为false
    try {
        while (task != null || (task = getTask()) != null) {//若当前task为空,则需要去阻塞队列拿任务
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&//
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())//如果当前线程池正在停止(状态大于等于STOP),则需要确保wt中断未置位标识为false,注意Thread.interrupted()返回当前线程中断位标记是否为true,并且会清除中断标记
                wt.interrupt();//如果置中断位置为true,则会影响FutureTask的get()方法中的awaitNone(boolean timed,long nanos)方法,如果awaitNone(boolean timed,long nanos)方法没有进入到LockSupport.park()/LockSupport.parkNanos()中,则调用FutureTask的get()会产生InterruptedException()异常

            try {
                beforeExecute(wt, task);//模板模式的钩子方法
                Throwable thrown = null;
                try {
                    task.run();//执行FutureTask中的run()方法
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);//模板模式的钩子方法
                }
            } finally {
                task = null;
                w.completedTasks++;//记录线程池完成的任务数量
                w.unlock();
            }
        }
        completedAbruptly = false;//上面没有发生异常,则将该标记位置为false
    } finally {
        processWorkerExit(w, completedAbruptly);//当没有任务执行时,则调用该方法,本方法会将当前工作线程从workers异常,方法最后调用
addWorker(null, false)
    }
}

1.6 getTask()方法

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {//如果当前线程池状态大于STOP状态,则不会处理任何任务返回false,如果当前线程池状态为SHUTDOW且阻塞队列为空,无任务可执行,同样返回空
            decrementWorkerCount();//取不到任务则将工作线程数量减一
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        if ((wc > maximumPoolSize || (timed && timedOut))//wc>maximunPoolSize可以忽略,因为工作线程数量不会大于maximumPoolSize,因此其肯定为false,timeOut初始为false,当从阻塞队列中拿不到任务时置为true
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);//这里的keepAliveTime即为构造线程池时传入的保持线程alive的时间
                workQueue.take();
            if (r != null)//如果取到任务,则返回
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

1.7 processWorkerExit(Worker w, boolean completeAbruptly)方法

private void processWorkerExit(Worker w, boolean completedAbruptly) {
    if (completedAbruptly) // 如果非异常结束,则上面的getTask()会将工作线程数减一,否则需要手动减一
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        completedTaskCount += w.completedTasks;
        workers.remove(w);//从工作线程集合中移除该worker
    } finally {
        mainLock.unlock();
    }

    tryTerminate();

    int c = ctl.get();
    if (runStateLessThan(c, STOP)) {
        if (!completedAbruptly) {
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && ! workQueue.isEmpty())
                min = 1;
            if (workerCountOf(c) >= min)
                return; // //重要!!如果非异常结束,将这里与上面的getTask()方法结合起来,意思就是,如果当前线程池的工作线程数量大于corePoolSize,并且当前工作线程在keepAliveTime时间内都没有任务可执行,则当前工作线程任务完成,光荣下岗
        }
        addWorker(null, false);//
    }
}

1.8 remove(Runnable task)

public boolean remove(Runnable task) {
    boolean removed = workQueue.remove(task);
    tryTerminate(); // 这里调用tryTerminate()方法
    return removed;
}

1.9 tryTerminate()

final void tryTerminate() {
    for (;;) {
        int c = ctl.get();
        if (isRunning(c) ||
            runStateAtLeast(c, TIDYING) ||
            (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))//重要!!当且仅当线程池满足1)线程池状态为STOP 2)线程池状态为SHUTDOW且阻塞队列中已经没有任务两个条件之一时,才会继续往下执行,否则将直接返回
            return;
        if (workerCountOf(c) != 0) { // Eligible to terminate
            interruptIdleWorkers(ONLY_ONE);//内部会尝试将一个工作线程的中断标记置为true
            return;
        }

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {//当程序走到这,说明目前工作线程数量为0
                try {
                    terminated();//钩子方法,默认为空方法,因此如果不重写terminated()方法,则TIDYIN状态和TERMINATED状态可以认为没有任何改变
                } finally {
                    ctl.set(ctlOf(TERMINATED, 0));
                    termination.signalAll();//唤起因awaitTermination(long timeout,TimeUnit unit)而阻塞的方法
                }
                return;
            }
        } finally {
            mainLock.unlock();
        }
        // else retry on failed CAS
    }

1.10 reject(Runnable command)方法

final void reject(Runnable command) {
    handler.rejectedExecution(command, this);//根据对应的拒绝策略执行对应的逻辑,默认的拒绝策略为ThreadPoolExecutor.AbortPolicy即扔出异常。
}

以上解析若有错误,麻烦各位指出,互相交流呀